Reparameterization and Its Role in Optimization Dynamics

Cristian Vega, **Hippolyte Labarrière**, Cesare Molinari, Lorenzo Rosasco, Silvia Villa

CIRM Workshop September 30, 2025

Context

Classical minimization task:

$$\min_{w \in \mathcal{W}} \mathcal{L}(w) \qquad (e.g. \ \mathcal{L}(w) = \frac{1}{2} ||Xw - y||^2)$$

Context

Classical minimization task:

$$\min_{w \in \mathcal{W}} \mathcal{L}(w) \qquad (e.g. \ \mathcal{L}(w) = \frac{1}{2} ||Xw - y||^2)$$

In most ML models (neural networks, LLMs, etc...) ightarrow Overparameterization

$$\min_{\theta \in \Theta} \mathcal{L}\left(h(\theta)\right), \quad \dim \Theta \gg \dim \mathcal{W}. \tag{1}$$

Context

Classical minimization task:

$$\min_{w \in \mathcal{W}} \mathcal{L}(w) \qquad (e.g. \ \mathcal{L}(w) = \frac{1}{2} ||Xw - y||^2)$$

In most ML models (neural networks, LLMs, etc...) \rightarrow Overparameterization

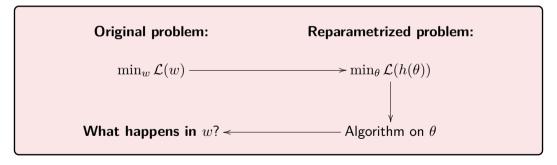
$$\min_{\theta \in \Theta} \mathcal{L}\left(h(\theta)\right), \quad \dim \Theta \gg \dim \mathcal{W}. \tag{1}$$

 \rightarrow Why is it efficient?

 \rightarrow Why overparameterization helps generalization?

Reparameterization

Idea: Study the effect of reparameterization on the optimization process



Gradient Flow vs Mirror flow

$$\min_{x \in \mathcal{X}} f(x)$$

Gradient Flow:

$$\frac{d}{dt}x(t) + \nabla f(x(t)) = 0, \ x(0) = x_0$$

→ continuous version of Gradient Descent

Gradient Flow vs Mirror flow

$$\min_{x \in \mathcal{X}} f(x)$$

Gradient Flow:

$$\frac{d}{dt}x(t) + \nabla f(x(t)) = 0, \ x(0) = x_0$$

→ continuous version of Gradient Descent

Mirror Flow (Alvarez et al., '04): for some convex and differentiable R,

$$\frac{d}{dt}\nabla R(x(t)) + \nabla f(x(t)) = 0, \ x(0) = x_0.$$

 \rightarrow modify the geometry of the space! (back to Gradient Flow for $R(x) = \frac{1}{2} ||x||^2$)

By modifying the geometry of the space, **Mirror Flow** induces a different **implicit** bias from **Gradient Flow**.

By modifying the geometry of the space, **Mirror Flow** induces a different **implicit** bias from **Gradient Flow**.

Let
$$f(x) = \frac{1}{2} ||Ax - y||^2$$

■ **Gradient Flow:** Converges towards

$$x_{\infty} = \arg\min\{\|x - x_0\|_2 : Ax = y\}$$

■ Mirror Flow: Converges towards

$$x_{\infty} = \arg\min \{ D_R(x, x_0) : Ax = y \}$$

= $\arg\min \{ R(x) - \langle \nabla R(x_0), x - x_0 \rangle : Ax = y \}$

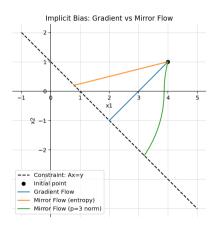
By modifying the geometry of the space, **Mirror Flow** induces a different **implicit** bias from **Gradient Flow**.

Let
$$f(x) = \frac{1}{2} ||Ax - y||^2$$

■ Gradient Flow: Converges towards

$$x_{\infty} = \arg\min\{\|x - x_0\|_2 : Ax = y\}$$

$$x_{\infty} = \arg\min \left\{ D_R(x, x_0) : Ax = y \right\}$$



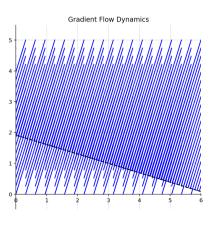
By modifying the geometry of the space, **Mirror Flow** induces a different **implicit** bias from **Gradient Flow**.

Let
$$f(x) = \frac{1}{2} ||Ax - y||^2$$

■ **Gradient Flow:** Converges towards

$$x_{\infty} = \arg\min\{\|x - x_0\|_2 : Ax = y\}$$

$$x_{\infty} = \arg\min \left\{ D_R(x, x_0) : Ax = y \right\}$$



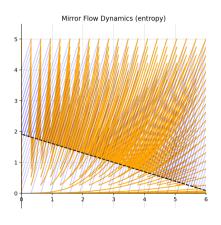
By modifying the geometry of the space, **Mirror Flow** induces a different **implicit** bias from **Gradient Flow**.

Let
$$f(x) = \frac{1}{2} ||Ax - y||^2$$

■ Gradient Flow: Converges towards

$$x_{\infty} = \arg\min\{||x - x_0||_2 : Ax = y\}$$

$$x_{\infty} = \arg\min \left\{ D_R(x, x_0) : Ax = y \right\}$$



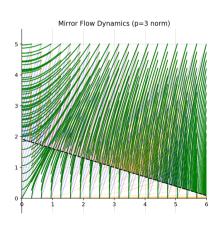
By modifying the geometry of the space, **Mirror Flow** induces a different **implicit** bias from **Gradient Flow**.

Let
$$f(x) = \frac{1}{2} ||Ax - y||^2$$

■ Gradient Flow: Converges towards

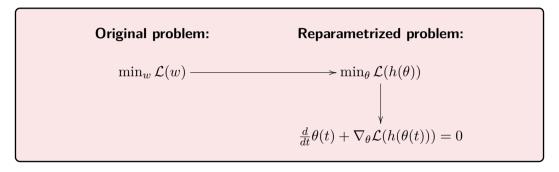
$$x_{\infty} = \arg\min\{\|x - x_0\|_2 : Ax = y\}$$

$$x_{\infty} = \arg\min \left\{ D_R(x, x_0) : Ax = y \right\}$$



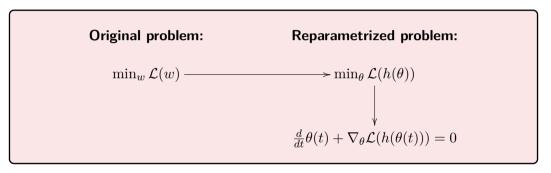
Back to Reparameterization

Let's train θ with **Gradient Flow**:



Back to Reparameterization

Let's train θ with **Gradient Flow**:

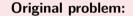


By chain rule: since $w(t) = h(\theta(t))$,

$$\frac{d}{dt}w(t) = \mathcal{J}_h(\theta(t))\frac{d}{dt}\theta(t) = -\mathcal{J}_h(\theta(t))\nabla_{\theta}\mathcal{L}(h(\theta(t))) = -\mathcal{J}_h(\theta(t))\mathcal{J}_h(\theta(t))^{\top}\nabla_{w}\mathcal{L}(w(t))$$

Back to Reparameterization

Let's train θ with **Gradient Flow**:



Reparametrized problem:

$$\min_{w} \mathcal{L}(w) \xrightarrow{\qquad} \min_{\theta} \mathcal{L}(h(\theta))$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

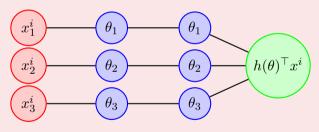
$$\frac{d}{dt}w(t) + \mathcal{J}_{h}(\theta(t))\mathcal{J}_{h}(\theta(t))^{\top} \nabla_{w} \mathcal{L}(w(t)) = 0 \leftarrow \frac{d}{dt}\theta(t) + \nabla_{\theta} \mathcal{L}(h(\theta(t))) = 0$$

Is it a **Mirror Flow** in w?

$$\to$$
 Yes, if $\mathcal{J}_h(\theta)\mathcal{J}_h(\theta)^{\top} = \nabla^2 R(w)^{-1}$ for some $R!$

Square reparameterization (Woodworth et al, '20):

Let $h(\theta) = \frac{1}{2}\theta \odot \theta$. Suppose $\mathcal{L}(w) = \frac{1}{2}\|Xw - y\|^2$.



[Woodworth et al, Kernel and rich regimes in overparametrized models, COLT, 2020.]

Square reparameterization (Woodworth et al, '20):

Let $h(\theta) = \frac{1}{2}\theta \odot \theta$.

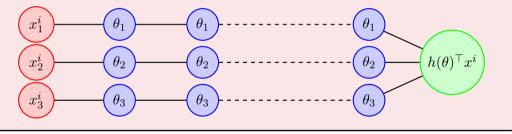
$$\frac{d}{dt}w(t) + \underbrace{\theta(t)\odot\theta(t)\odot\nabla\mathcal{L}(w(t))}_{=\mathrm{diag}(2w(t))\nabla\mathcal{L}(w(t))} = 0$$

 \rightarrow Mirror Flow with $R(w) = \frac{1}{2} \sum_{i=1}^{d} w_i \log(w_i) - w_i$.

[Woodworth et al, Kernel and rich regimes in overparametrized models, COLT, 2020.]

Polynomial reparameterization (Woodworthet al, '20, Chou, Maly, Rauhut, '21):

Let $h(\theta) = \theta^{\odot L}$ for L > 2. Suppose $\mathcal{L}(w) = \frac{1}{2} ||Xw - y||^2$.



[Woodworth et al, Kernel and rich regimes in overparametrized models, COLT, 2020.]

[Chou, Maly, Rauhut, More is less: inducing sparsity via overparameterization, Information and Inference, 2021]

Polynomial reparameterization (Woodworthet al, '20, Chou, Maly, Rauhut, '21):

Let $h(\theta) = \theta^{\odot L}$ for L > 2.

$$\frac{d}{dt}w(t) + Lw(t)^{\odot(L-1)} \odot \nabla \mathcal{L}(w(t)) = 0.$$

ightarrow Mirror Flow with $R(w) = \langle \theta(0)^{L-2}, w \rangle - \frac{L}{2} \left\langle \mathbf{1}, w^{\frac{2}{L}} \right\rangle$.

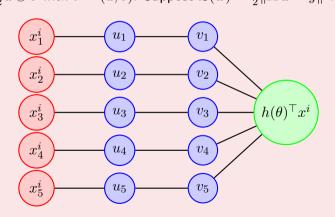
[Woodworth et al, Kernel and rich regimes in overparametrized models, COLT, 2020.]

[Chou, Maly, Rauhut, More is less: inducing sparsity via overparameterization, Information and Inference, 2021]

g

Diagonal Linear Networks

Diagonal Linear Networks (Woodworth et al, '20, Moroshko et al., '20): Let $h(\theta) = \frac{1}{2}u \odot v$ with $\theta = (u, v)$. Suppose $\mathcal{L}(w) = \frac{1}{2}\|Xw - y\|^2$.



Diagonal Linear Networks

Diagonal Linear Networks (Woodworth et al., '20, Moroshko et al., '20): Let $h(\theta) = \frac{1}{2}u \odot v$ with $\theta = (u, v)$.

• (Woodworth et al., '20, Moroshko et al., '20) **Mirror Flow** in w with Mirror map:

$$R(w) = \frac{1}{2} \sum_{i=1}^{d} \left(2w_i \operatorname{arcsinh}\left(\frac{2w_i}{\Delta_0}\right) - \sqrt{4w_i^2 + \Delta_0^2} + \Delta_0 \right) - \frac{1}{2} \left\langle \log \left| \frac{\theta_+(0)}{\theta_-(0)} \right|, \theta \right\rangle$$

- (Pesme et al., '21, Even et al., '23) **Stochasticity** helps generalization.
- (Nacson et al., '22) Larger step-sizes in Gradient Descent induce sparsity.
- (Papazov et al., '24) Adding **momentum** also helps generalization.

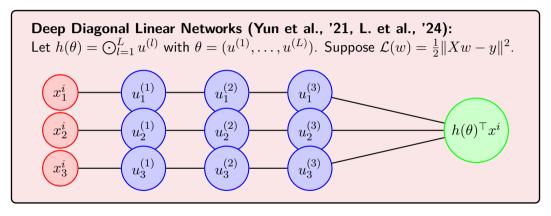
Diagonal Linear Networks

Diagonal Linear Networks (Woodworth et al, '20, Moroshko et al., '20): Let $h(\theta) = \frac{1}{2}u \odot v$ with $\theta = (u,v)$.

- (Woodworth et al., '20, Moroshko et al., '20) Mirror Flow with an entropy map behaving as
 - $D_R(w, w_0) \sim ||w||_1$ for small initialization \rightarrow encourages sparsity.
 - $D_R(w, w_0) \sim \frac{1}{2} \|w w_0\|_2^2$ for large initialization.
- (Pesme et al., '21, Even et al., '23) **Stochasticity** helps generalization.
- (Nacson et al., '22) Larger step-sizes in Gradient Descent induce sparsity.
- (Papazov et al., '24) Adding **momentum** also helps generalization.

[Moroshko et al, Implicit bias in deep linear classification: Initialization scale vs training accuracy, NEURIPS, 2020.] [Pesme, Pillaud-Vivien, Flammarion, Implicit bias of SGD for diagonal linear networks: a provable benefit of stochasticity, NEURIPS, 2021.] [Even, Pesme, Gunasekar, Flammarion, (S)GD over diagonal linear networks: Implicit bias, large stepsizes and edge of stability, NEURIPS, 2023.] [Nacson, Ravichandran, Srebro, Soudry, Implicit bias of the step size in linear diagonal neural networks, ICML, 2022.] [Papazov, Pesme, Flammarion, Leveraging continuous time to

Deep Diagonal Linear Networks



[Yun, Krishnan, Mobahi, A unifying view on implicit bias in training linear neural networks, ICLR, 2021.] . [L., Molinari, Rosasco, Villa, Vega, Optimization Insights into Deep Diagonal Linear Networks, arxiv, 2024]

Deep Diagonal Linear Networks

Deep Diagonal Linear Networks (Yun et al., '21, L. et al., '24):

Let $h(\theta) = \bigcirc_{l=1}^{L} u^{(l)}$ with $\theta = (u^{(1)}, \dots, u^{(L)})$.

- (L. et al., '24) Under mild initialization assumptions, Gradient Flow in $\theta \equiv \text{Mirror Flow}$ in $w = h(\theta)$.
- (Yun et al., '21) For some structure of initialization,
 - Small initialization $\rightarrow \ell_1$ bias (sparsity).
 - $lue{}$ More layers o stronger sparsity.

[Yun, Krishnan, Mobahi, A unifying view on implicit bias in training linear neural networks, ICLR, 2021.] . [L., Molinari, Rosasco, Villa, Vega, Optimization Insights into Deep Diagonal Linear Networks, arxiv, 2024]

Other models and challenges

Matrix factorization (Gunasekar et al., '17, '18):

Let
$$h(\theta) = UV^{\top}$$
 with $\theta = (U, V)$.

For small initialization, w(t) goes to the minimal nuclear norm solution.

Weight normalization (Salimans, Kingma, '16, Chou et al., '24):

Let
$$h(\theta) = g \frac{v}{\|v\|}$$
 with $\theta = (g, v)$.

 \rightarrow Sparsity inducing

[Gunasekar, Woodworth, Bhojanapalli, Neyshabur, Srebro, Characterizing implicit bias in terms of optimization geometry, NEURIPS, 2018.] [Gunasekar, Lee, Soudry, Srebro, Implicit regularization in matrix factorization: Implicit regularization in matrix factorization, ICML, 2018.] [Salimans, Kingma, Weight normalization: A simple reparameterization to accelerate training of deep neural networks, NEURIPS, 2016.] [Chou, Rauhut, Ward, Robust implicit regularization via weight normalization, Information and Inference, 2024.]

Other models and challenges

Generalizing Mirror Flow (Vega et al., in preparation):

Some reparameterizations do not lead to Mirror Flow! But we can still characterize the implicit bias.

Studying Conservative Laws (Marcotte, Peyré, Gribonval, '23,'24,'25)

What are the invariant quantities during training?

[Vega, Molinari, Villa, Rosasco, Learning from data via over-parametrization, in preparation.] [Marcotte, Peyré, Gribonval, Abide by the law and follow the flow: Conservation laws for gradient flows, NEURIPS, 2023.] [Marcotte, Peyré, Gribonval, Keep the momentum: Conservation laws beyond euclidean gradient flows, arxiv, 2024.] [Marcotte, Peyré, Gribonval, Transformative or Conservative? Conservation laws for ResNets and Transformers, arxiv, 2025]

Conclusion

Takeaways:

- Implicit bias of overparameterized models can be studied via optimization dynamics,
- Simple models give insights on more complex ones.

Limitations:

- Oversimplified models,
- Not adapted to non-linear models, i.e. $f_{\theta}(x^i) \neq \theta^{\top} x^i$,
- Challenging computations.

What about convergence to a global minimum?

 \rightarrow Oymak et al., '18, Chizat et al., '19, Li et al., '22, Chatterjee, '22, Kachaiev et al., in preparation.

Thank you for your attention!

Questions?

Related works:

- Vega. C., Molinari, C., Villa, S., Rosasco, L. (in preparation). Learning from data via over-parametrization.
- Labarrière, H., Molinari, C., Rosasco, L., Villa, S., Vega, C. (2024). Optimization Insights into Deep Diagonal Linear Networks. arXiv preprint arXiv:2412.16765.
- Kachaiev, O., Labarrière, H., Molinari, C., Villa, S. (in preparation). Geometric conditions for convergence of Gradient Flow to a global minimum.

My Website:

https://hippolytelbrrr.github.io/pages/index_eng.html