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Context

Classical minimization task:

1 q — 1 | J— 2
min L) (0. () = 5 Xuw—y]?)

In most ML models (neural networks, LLMs, etc...) — Overparameterization
gréiélﬁ (h(#)), dim®O > dimW. (1)

— Why is it efficient?
— Why overparameterization helps generalization?



Reparameterization

Idea: Study the effect of reparameterization on the optimization process

r

Original problem: Reparametrized problem:

min,, £(w) ming £(h(6))

What happens in w? Algorithm on 6




Gradient Flow vs Mirror flow
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Gradient Flow: y
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Gradient Flow vs Mirror flow

min f(z)

Gradient Flow: p
72t + Vf(2(t) =0, 2(0) = zo

— continuous version of Gradient Descent

Mirror Flow (Alvarez et al., '04): for some convex and differentiable R,

%VR(az(t)) + Vf(z(t)) =0, 2(0) = zo.

— modify the geometry of the space! (back to Gradient Flow for
R(z) = gllz]?)

\

[Alvarez, Bolte, Brahic. Hessian Riemannian gradient flows in convex programming, SICON, 2004.]
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Implicit Bias

By modifying the geometry of the space, Mirror Flow induces a different implicit
bias from Gradient Flow.

Let f(z) = 5]l Az —y|?

m Gradient Flow: Converges towards
Too = argmin{||z — xgl|2 : Az =y}
m Mirror Flow: Converges towards

Too = argmin { Dp(z,x0) : Az =y}

Implicit Bias: Gradient vs Mirror Flow

-2 S

——- Constraint: Ax=y N,
@ Initial point N
—— Gradient Flow N,
—— Mirror Flow (entropy) N,
—— Mirror Flow (p=3 norm) S
i



Implicit Bias

By modifying the geometry of the space, Mirror Flow induces a different implicit
bias from Gradient Flow.

Let f(z) = 5]l Az —y|?

m Gradient Flow: Converges towards
Too = argmin{||z — xgll2 : Az =y}
m Mirror Flow: Converges towards

Too = argmin { Dp(z,x0) : Az =y}

Gradient Flow Dynamics
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Implicit Bias

By modifying the geometry of the space, Mirror Flow induces a different implicit
bias from Gradient Flow.

Let f((L‘) = %HA;E — y“2 MirroriFIow Dynamics (entropy) |

m Gradient Flow: Converges towards

i

Too = arg min{ ||z — zgl|2 : Az =y}
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m Mirror Flow: Converges towards

i

i

Too = argmin { Dp(x, z0) : Az =y}




Implicit Bias

By modifying the geometry of the space, Mirror Flow induces a different implicit
bias from Gradient Flow.

Let f((]j‘) = %HAx — yH2 Mirror Flow Dynamics (p=3 norm)

m Gradient Flow: Converges towards
Too = argmin{||z — xgll2 : Az =y}
m Mirror Flow: Converges towards

Too = argmin { Dp(z,x0) : Az =y}
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Back to Reparameterization

Let's train # with Gradient Flow:

Original problem: Reparametrized problem:

min,, £(w) ming L(h(6))

40(t) + VoL (h(8(t))) = 0

By chain rule: since w(t) = h(0(t)),

Cau(t) = Tn(0(0) S0(1) = ~Tn(O(0) VoL (h(B(1))) = ~Tn(O(0)Tn(O(0) VauL(w(t)



Back to Reparameterization

Let's train 6§ with Gradient Flow:

Original problem: Reparametrized problem:

min,, £(w) ming L£(h(6))

Fw(t) + Tn(0(6)) Tn(0()) T VLl (w(t)) = 0= £6(t) + VoL(h(0(t))) = 0

Is it a Mirror Flow in w?

— Yes, if J,(0)J,(0)T = V2R(w)~! for some R!




Examples

Square reparameterization (Woodworth et al, '20):
Let h(6) = 36 ® 6. Suppose L(w) = || Xw — y]|2.

L

[Woodworth et al, Kernel and rich regimes in overparametrized models, COLT, 2020.]



Examples

Square reparameterization (Woodworth et al, '20):
Let h(0) = 30 © 0.

%w(t) +0(t) ©6(t) © VL(w(t)) = 0

=diag(2w(t))VL(w(t))

— Mirror Flow with R(w) = $ 2% w; log(w;) — w;.

\

[Woodworth et al, Kernel and rich regimes in overparametrized models, COLT, 2020.]



Examples

Polynomial reparameterization (Woodworthet al, '20, Chou, Maly,
Rauhut, ’21):
Let h(0) = 6°L for L > 2. Suppose L(w) = 3| Xw — y|*.

[Woodworth et al, Kernel and rich regimes in overparametrized models, COLT, 2020.]

[Chou, Maly, Rauhut, More is less: inducing sparsity via overparameterization, Information and Inference, 2021]



Examples

Polynomial reparameterization (Woodworthet al, '20, Chou, Maly,
Rauhut, '21):
Let h(0) = 0°F for L > 2.

%w(t) + Luw(®)®ED @ VL(w(t)) = 0.

— Mirror Flow with R(w) = (9(0)%,w) — & (1,wi ).

\

[Woodworth et al, Kernel and rich regimes in overparametrized models, COLT, 2020.]

[Chou, Maly, Rauhut, More is less: inducing sparsity via overparameterization, Information and Inference, 2021]




Diagonal Linear Networks

~

Diagonal Linear Networks (Woodworth et al, '20, Moroshko et al., '20):
Let h(0) = 2u ® v with 6 = (u,v). Suppose L(w) = 5[ Xw — y||.
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Diagonal Linear Networks

Diagonal Linear Networks (Woodworth et al, '20, Moroshko et al., '20):
Let h(0) = 2u ® v with § = (u,v).
m (Woodworth et al., '20, Moroshko et al., '20) Mirror Flow in w with

Mirror map:
1 d . Qwi 1 9+(0)
R(w) = 3 ; <2wiarcsmh (Ao) — \/m—i- A0>—2 <10g 6_(0) ,0

m (Pesme et al., '21, Even et al., '23) Stochasticity helps generalization.
m (Nacson et al.,, '22) Larger step-sizes in Gradient Descent induce sparsity.
[

(Papazov et al., '24) Adding momentum also helps generalization.

10



Diagonal Linear Networks

Diagonal Linear Networks (Woodworth et al, '20, Moroshko et al., '20):
Let h(0) = 2u ® v with 6 = (u,v).
m (Woodworth et al., '20, Moroshko et al., '20) Mirror Flow with an
entropy map behaving as
m Dg(w,wp) ~ ||w||; for small initialization — encourages sparsity.
m Dr(w,wo) ~ 3|lw — wo||3 for large initialization.

m (Pesme et al., '21, Even et al., '23) Stochasticity helps generalization.
m (Nacson et al., '22) Larger step-sizes in Gradient Descent induce sparsity.
]

(Papazov et al., '24) Adding momentum also helps generalization.

\

[Moroshko et al, Implicit bias in deep linear classification: Initialization scale vs training accuracy, NEURIPS, 2020.] [Pesme, Pillaud-Vivien, Flam-
marion, Implicit bias of SGD for diagonal linear networks: a provable benefit of stochasticity, NEURIPS, 2021.] [Even, Pesme, Gunasekar, Flam-
marion, (S)GD over diagonal linear networks: Implicit bias, large stepsizes and edge of stability, NEURIPS, 2023.] [Nacson, Ravichandran, Srebro,

Soudry, Implicit bias of the step size in linear diagonal neural networks, ICML, 2022.] [Papazov, Pesme, Flammarion, Leveraging continuous time to
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Deep Diagonal Linear Networks

Deep Diagonal Linear Networks (Yun et al., 21, L. et al., "24):
Let h(0) = O, u with 0 = (uV, ..., uP)). Suppose L(w) = 3| Xw — y|%.

[Yun, Krishnan, Mobahi, A unifying view on implicit bias in training linear neural networks, ICLR, 2021.] . [L.,

Molinari, Rosasco, Villa, Vega, Optimization Insights into Deep Diagonal Linear Networks, arxiv, 2024]
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Deep Diagonal Linear Networks

Deep Diagonal Linear Networks (Yun et al., 21, L. et al., '24):
Let h(0) = OF, u® with § = (uM, ... u®).
m (L. et al., '24) Under mild initialization assumptions,
Gradient Flow in § = Mirror Flow in w = h(6).

m (Yun et al., '21) For some structure of initialization,

m Small initialization — ¢; bias (sparsity).
m More layers — stronger sparsity.

\

[Yun, Krishnan, Mobahi, A unifying view on implicit bias in training linear neural networks, ICLR, 2021.] . [L.,

Molinari, Rosasco, Villa, Vega, Optimization Insights into Deep Diagonal Linear Networks, arxiv, 2024]



Other models and challenges

Matrix factorization (Gunasekar et al., '17, '18):
Let h() = UV T with § = (U, V).

For small initialization, w(t) goes to the minimal nuclear norm solution.

Weight normalization (Salimans, Kingma, '16, Chou et al., '24):
Let h(0) = gyt With 6 = (g,v).

— Sparsity inducing

\ J

[Gunasekar, Woodworth, Bhojanapalli, Neyshabur, Srebro, Characterizing implicit bias in terms of optimization
geometry, NEURIPS, 2018.] [Gunasekar, Lee, Soudry, Srebro, Implicit regularization in matrix factorization:
Implicit regularization in matrix factorization, ICML, 2018.] [Salimans, Kingma, Weight normalization: A sim-
ple reparameterization to accelerate training of deep neural networks, NEURIPS, 2016.] [Chou, Rauhut, Ward,
Robust implicit regularization via weight normalization, Information and Inference, 2024.]
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Other models and challenges

Generalizing Mirror Flow (Vega et al., in preparation):

Some reparameterizations do not lead to Mirror Flow! But we can still
characterize the implicit bias.

Studying Conservative Laws (Marcotte, Peyré, Gribonval, '23,’24,’25)

What are the invariant quantities during training?

\ J

[Vega, Molinari, Villa, Rosasco, Learning from data via over-parametrization, in preparation.] [Marcotte, Peyré,
Gribonval, Abide by the law and follow the flow: Conservation laws for gradient flows, NEURIPS, 2023.] [Mar-
cotte, Peyré, Gribonval, Keep the momentum: Conservation laws beyond euclidean gradient flows, arxiv, 2024.]
[Marcotte, Peyré, Gribonval, Transformative or Conservative? Conservation laws for ResNets and Transformers,

arxiv, 2025]
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Conclusion

Takeaways:

m Implicit bias of
overparameterized models can
be studied via optimization
dynamics,

m Simple models give insights
on more complex ones.

Limitations:
m Oversimplified models,
m Not adapted to non-linear
models, i.e. fg(z') # 0Tzt

m Challenging computations.

What about convergence to a global minimum?
— Oymak et al., '18, Chizat et al., '19, Li et al., '22, Chatterjee, 22, Kachaiev
et al., in preparation.
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Thank you for your attention!

Questions?
Related works:

m Vega. C., Molinari, C., Villa, S., Rosasco, L. (in preparation). Learning from data
via over-parametrization.

m Labarriere, H., Molinari, C., Rosasco, L., Villa, S., Vega, C. (2024). Optimization
Insights into Deep Diagonal Linear Networks. arXiv preprint arXiv:2412.16765.

m Kachaiev, O., Labarriére, H., Molinari, C., Villa, S. (in preparation). Geometric
conditions for convergence of Gradient Flow to a global minimum.
My Website:

https://hippolytelbrrr.github.io/pages/index_eng.html
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