Inertia in optimization

Optimization an geometry

Inertia without uniqueness of th minimizers

Conclusion

Inertial methods beyond minimizer uniqueness

Hippolyte Labarrière

Joint work with Jean-François Aujol, Charles Dossal and Aude Rondepierre

EUROPT 2024 Lund University, Sweden June 27, 2024

Minimization problem

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

where:

• f is a convex differentiable function having a L-Lipschitz gradient,

- *h* is a convex proper lower semicontinuous function,
- F has a non-empty set of minimizers X^* .

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Motivations

 $\min_{x \in \mathbb{R}^N} F(x),$

Which algorithm is the most efficient according to the **assumptions** satisfied by F and the **expected accuracy**?

 \rightarrow Convergence analysis of the numerical schemes:

How fast does $F(x_k) - F^*$ decreases?

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

A classical algorithm: the proximal gradient method (Combettes and Wajs, '05)

$$\forall k > 0, \ x_k = \operatorname{prox}_{sh} \left(x_{k-1} - s \nabla f(x_{k-1}) \right).$$

Composite version of the Gradient Descent method:

$$\forall k > 0, \ x_k = x_{k-1} - s \nabla F(x_{k-1}).$$

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

A classical algorithm: the proximal gradient method (Combettes and Wajs, '05)

$$\forall k > 0, \ x_k = \operatorname{prox}_{sh} \left(x_{k-1} - s \nabla f(x_{k-1}) \right).$$

Composite version of the Gradient Descent method:

$$\forall k > 0, \ x_k = x_{k-1} - s \nabla F(x_{k-1}).$$

Convergence guarantees

If F is convex and s is sufficiently small:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-1}\right)$$

 \rightarrow Simple but slow!

A classical algorithm: the proximal gradient method

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of th minimizers

Conclusion

$\forall k > 0, \ \boldsymbol{x_k} = \operatorname{prox}_{sh} \left(\boldsymbol{x_{k-1}} - s \nabla f(\boldsymbol{x_{k-1}}) \right).$

A classical algorithm: the proximal gradient method

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of th minimizers

Conclusion

$\forall k > 0, \ \boldsymbol{x_k} = \operatorname{prox}_{sh} \left(\boldsymbol{x_{k-1}} - s \nabla f(\boldsymbol{x_{k-1}}) \right).$

A classical algorithm: the proximal gradient method

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of th minimizers

Conclusion

$\forall k > 0, \ \boldsymbol{x_k} = \operatorname{prox}_{sh} \left(\boldsymbol{x_{k-1}} - s \nabla f(\boldsymbol{x_{k-1}}) \right).$

A classical algorithm: the proximal gradient method

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of th minimizers

Conclusion

$\forall k > 0, \ \mathbf{x_k} = \operatorname{prox}_{sh} \left(\mathbf{x_{k-1}} - s\nabla f(\mathbf{x_{k-1}}) \right).$

A classical algorithm: the proximal gradient method

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of th minimizers

Conclusion

$\forall k > 0, \ \boldsymbol{x_k} = \operatorname{prox}_{sh} \left(\boldsymbol{x_{k-1}} - s \nabla f(\boldsymbol{x_{k-1}}) \right).$

Introducing inertia

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Introducing inertia

 \rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Rising question

How to chose α_k ?

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Introducing inertia

 \rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Rising question

How to chose α_k ?

- Heavy-Ball schemes (Polyak, '64, Nesterov, '03, ...): constant friction $\rightarrow \alpha_k = \alpha$.
- **FISTA** (Beck and Teboulle, '09, Nesterov, '83): vanishing friction $\rightarrow \alpha_k = \frac{k-1}{k+\alpha-1}$.

Optimization and geometry

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Strong convexity (SC_{μ})

F is μ -strongly convex if for all $x \in \mathbb{R}^N$, $g: x \mapsto F(x) - \frac{\mu}{2} ||x||^2$ is convex.

Convergence rate of $F(x_k) - F^*$

Algorithm	Convex	\mathcal{SC}_{μ}
Proximal gradient method	$\mathcal{O}\left(k^{-1} ight)$	$\mathcal{O}\left(e^{-rac{\mu}{L}k} ight)$
Heavy-Ball (constant friction)	$\mathcal{O}\left(k^{-1} ight)$	$\mathcal{O}\left(e^{-2\sqrt{rac{\mu}{L}}k} ight)$
FISTA (vanishing friction)	$\mathcal{O}\left(k^{-2} ight)$	$\mathcal{O}\left(k^{-rac{2lpha}{3}} ight)$

Optimization and geometry

Classical geometry assumptions

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

• Quadratic growth condition (\mathcal{G}^2_{μ}) :

 ${\boldsymbol{F}}$ has a quadratic growth around its set of minimizers if

$$\exists \mu > 0, \ \forall x \in \mathbb{R}^N, \ rac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*.$$

Practical example: LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - y||^2 + \lambda ||x||_1.$$

Optimization and geometry

Classical geometry assumptions

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

• Quadratic growth condition (\mathcal{G}^2_{μ}) :

 ${\boldsymbol{F}}$ has a quadratic growth around its set of minimizers if

$$\exists \mu > 0, \ \forall x \in \mathbb{R}^N, \ \frac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*.$$

Practical example: LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - y||^2 + \lambda ||x||_1.$$

• Hölderian error bound (\mathcal{H}^{γ}) :

F has a γ -Hölderian growth around its set of minimizers (with $\gamma>2$) if

 $\exists K > 0, \ \forall x \in \mathbb{R}^N, \ Kd(x, X^*)^{\gamma} \leqslant F(x) - F^*.$

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Problem statement

Most improved convergence results for first-order inertial methods (and corresponding dynamical systems) rely on the assumption that F has a unique minimizer:

Algorithm	\mathcal{SC}_{μ}	\mathcal{G}^2_μ and unique	\mathcal{G}^2_μ
		minimizer	
Proximal gradient method	$\mathcal{O}\left(e^{-\frac{\mu}{L}k} ight)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k} ight)$	$\mathcal{O}\left(e^{-\frac{\mu}{L}k} ight)$
Heavy-Ball methods	$\mathcal{O}\left(e^{-2\sqrt{rac{\mu}{L}}k} ight)$	$\mathcal{O}\left(e^{-(2-\sqrt{2})\sqrt{\frac{\mu}{L}}k} ight)$	$\mathcal{O}\left(e^{-rac{\mu}{L}k} ight)$
FISTA	$\mathcal{O}\left(k^{-rac{2lpha}{3}} ight)$	$\mathcal{O}\left(k^{-rac{2lpha}{3}} ight)$	$\mathcal{O}\left(k^{-2} ight)$

 \rightarrow FISTA restart schemes for \mathcal{G}^2_{μ} : $\mathcal{O}\left(e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}\right)$ without an uniqueness assumption!

Is this hypothesis necessary to get fast convergence rates?

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Our strategy

Consider V-FISTA (Beck,'17, Nesterov, '03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1}))\\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

where F = f + h is such that $\frac{\mu}{2}d(x, X^*)^2 \leq F(x) - F^*$ for any $x \in \mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_{k} = s(F(x_{k}) - F^{*}) + \frac{1}{2} \|\lambda(x_{k} - x^{*}) + x_{k} - x_{k-1}\|^{2}$$

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Our strategy

Consider V-FISTA (Beck, '17, Nesterov, '03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

where F = f + h is such that $\frac{\mu}{2}d(x, X^*)^2 \leq F(x) - F^*$ for any $x \in \mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_{k} = s(F(x_{k}) - F^{*}) + \frac{1}{2} \|\lambda(x_{k} - \boldsymbol{x}_{k}^{*}) + x_{k} - x_{k-1}\|^{2}$$

where x_k^* is the projection of x_k onto the set of minimizers of F denoted X^* .

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Our strategy

Consider V-FISTA (Beck,'17, Nesterov, '03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

where F = f + h is such that $\frac{\mu}{2}d(x, X^*)^2 \leq F(x) - F^*$ for any $x \in \mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_{k} = s(F(x_{k}) - F^{*}) + \frac{1}{2} \|\lambda(x_{k} - \boldsymbol{x}_{k}^{*}) + x_{k} - x_{k-1}\|^{2}$$

where x_k^* is the projection of x_k onto the set of minimizers of F denoted X^* .

 \rightarrow Trickier calculations \rightarrow No assumption on X^* required!

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Main results: V-FISTA

$$/k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If F satisfies \mathcal{G}^2_μ , $s = \frac{1}{L}$ and $\alpha = 1 - \frac{5}{3\sqrt{3}}\sqrt{\frac{\mu}{L}}$:

$$F(x_k) - F^* = \mathcal{O}\left(e^{-\frac{2}{3\sqrt{3}}\sqrt{\frac{\mu}{L}}k}\right)$$

- Uniqueness of the minimizer is not required.
- Theoretical guarantees for non optimal values of α .
- Better worst-case bound than any FISTA restart scheme: $\mathcal{O}\left(e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}\right)$.
- α depends on $\frac{\mu}{L}!$

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Main results: FISTA for \mathcal{G}^2_{μ}

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha - 1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If F satisfies \mathcal{G}^2_{μ} , $s = \frac{1}{L}$ and $\alpha \ge 3 + \frac{3}{\sqrt{2}}$:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\alpha}{3}}\right)$$

- Uniqueness of the minimizer is not required.
- Finite time bound available.
- α can be parametrized according to the expected accuracy to get improved performance.

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Main results: FISTA for \mathcal{H}^{γ}

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha - 1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If F is coercive and there exists $\varepsilon > 0$, K > 0 and $\gamma > 2$ such that F satisfies the following inequality for any minimizer x^*

$$\forall x \in B(x^*, \varepsilon), \ Kd(x, X^*)^{\gamma} \leq F(x) - F^*,$$

then for $\alpha > 5 + \frac{8}{\gamma - 2}$:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\gamma}{\gamma-2}}\right)$$
 and $\|x_k - x_{k-1}\| = \mathcal{O}\left(k^{-\frac{\gamma}{\gamma-2}}\right)$

ramework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Main results: FISTA for \mathcal{H}^{γ}

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha - 1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If F is coercive and there exists $\varepsilon > 0$, K > 0 and $\gamma > 2$ such that F satisfies the following inequality for any minimizer x^*

$$\forall x \in B(x^*, \varepsilon), \ Kd(x, X^*)^{\gamma} \leqslant F(x) - F^*,$$

then for $\alpha > 5 + \frac{8}{\gamma - 2}$:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\gamma}{\gamma-2}}\right)$$
 and $\|x_k - x_{k-1}\| = \mathcal{O}\left(k^{-\frac{\gamma}{\gamma-2}}\right)$

Corollary: Under the same assumptions, for any $\alpha > 5$, the sequence $(x_k)_{k \in \mathbb{N}}$ converges **strongly** to a minimizer of F.

Conclusion

Framework

Inertia in optimization

Optimization an geometry

Inertia without uniqueness of the minimizers

Conclusion

Take-away message

In the convex setting, inertia is still relevant for functions having multiple minimizers!

	\mathcal{SC}_{μ}	\mathcal{G}^2_μ	\mathcal{H}^γ	Convexity
Best option	HB	HB	FISTA	FISTA

Pending questions:

- Could the Performance Estimation Problem approach (Drori and Teboulle, '14, Taylor, Hendrickx and Glineur, '17, Taylor and Drori, '22) allow to find tighter bounds?
- Heavy Ball methods require to know the growth parameter of F: could an adaptive strategy be applied to avoid this issue?

Conclusion

Framework

Inertia in optimization

Optimization and geometry

Inertia without uniqueness of the minimizers

Conclusion

Thank you for your attention!

Preprints:

- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball Momentum for Non-Strongly Convex Optimization, 2024, arXiv preprint arXiv:2403.06930.
- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong Convergence of FISTA under a Weak Growth Condition, currently in writing.

My thesis manuscript (in french!):

• Hippolyte Labarrière, 2023, Étude de méthodes inertielles en optimisation et leur comportement sous conditions de géométrie.

Website:

https://hippolytelbrrr.github.io/

References I

A speed restart scheme for a dynamics with hessian-driven damping. Journal of Optimization Theory and Applications, Sep 2023.

References II

I. Necoara, Y. Nesterov, and F. Glineur.

Linear convergence of first order methods for non-strongly convex optimization. *Mathematical Programming*, 175(1):69–107, 2019.

Y. Nesterov.

A method of solving a convex programming problem with convergence rate $o(1/k^2)$. In Sov. Math. Dokl, volume 27, 1983.

B. Shi, S. S. Du, M. I. Jordan, and W. J. Su.

Understanding the acceleration phenomenon via high-resolution differential equations. *Mathematical Programming*, 195(1):79–148, Sep 2022.

W. Su, S. Boyd, and E. Candes.

A differential equation for modeling nesterov's accelerated gradient method: theory and insights. Advances in neural information processing systems, 27, 2014.

 \rightarrow Key tool in convergence analysis: Link numerical schemes to dynamical systems.

 $\textbf{Gradient descent} \rightarrow \textbf{Gradient flow}$

$$x_k = x_{k-1} - s\nabla F(x_{k-1})$$

 \rightarrow Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent \rightarrow Gradient flow

$$x_k = x_{k-1} - s\nabla F(x_{k-1})$$

$$\iff \frac{x_k - x_{k-1}}{s} = -\nabla F(x_{k-1})$$

 \rightarrow Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent \rightarrow Gradient flow

$$x_k = x_{k-1} - s\nabla F(x_{k-1})$$

$$\iff \frac{x_k - x_{k-1}}{s} = -\nabla F(x_{k-1})$$

$$\downarrow$$

$$\dot{x}(t) + \nabla F(x(t)) = 0.$$

Nesterov's accelerated gradient \rightarrow Asymptotic vanishing damping system (Su, Boyd and Candès, 2014)

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \frac{k-1}{k+\alpha - 1} (x_k - x_{k-1}) \\ \downarrow \\ \ddot{x}(t) + \frac{\alpha}{t} \dot{x}(t) + \nabla F(x(t)) = 0 \end{cases}$$

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha(x_k - x_{k-1}), \\ \downarrow \\ \ddot{x}(t) + \alpha_C \dot{x}(t) + \nabla F(x(t)) = 0 \end{cases}$$

Why is this relevant?

- easier computations (derivatives),
- most of the time, convergence properties of the trajectories can be extended to the iterates of the related scheme.

Back to the discrete setting

Challenging for the following reasons:

- no more derivative,
- several possible discretization choices,
- which condition on the stepsize?

The continuous setting

Consider the Heavy-Ball friction system:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} \|\lambda(x(t) - x^*) + \dot{x}(t)\|^2$$

The continuous setting

Consider the Heavy-Ball friction system:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} \|\lambda(x(t) - x^*(t)) + \dot{x}(t)\|^2$$

where $x^*(t)$ is the projection of x(t) onto the set of minimizers of F denoted X^* .

The continuous setting

Consider the Heavy-Ball friction system:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} \|\lambda(x(t) - x^*(t)) + \dot{x}(t)\|^2$$

where $x^*(t)$ is the projection of x(t) onto the set of minimizers of F denoted X^* .

 \rightarrow The differentiability of ${\mathcal E}$ depends on the regularity of $X^*!$

If X^* is sufficiently regular (e.g. polyhedral), several convergence results can be extended without the uniqueness assumption (e.g. Siegel, '19, Aujol, Dossal and Rondepierre, '23).

An ugly bound

Main results: V-FISTA

If
$$F$$
 satisfies \mathcal{G}^2_{μ} , $s = \frac{1}{L} \alpha = 1 - \omega \sqrt{\kappa}$ where $\kappa = \frac{\mu}{L}$, $\omega \in \left(0, \frac{1}{\sqrt{\kappa}}\right)$. Then, for any $k \in \mathbb{N}$:
 $F(x_k) - F^* \leq \left(1 + (\omega - \tau)^2 + (\omega - \tau)\omega\tau\sqrt{\kappa}\right) \left(1 - \tau\sqrt{\kappa} + \tau^2\kappa\right)^k (F(x_0) - F^*),$

if

$$(1 - \omega\sqrt{\kappa})\tau^3 - \omega(2 - \omega\sqrt{\kappa})\tau^2 + (\omega^2 + 2)\tau - \omega \leq 0$$

An other ugly bound

Main results: FISTA

If F satisfies \mathcal{G}^2_{μ} , $s = \frac{1}{L}$, $\alpha \geqslant 3 + \frac{3}{\sqrt{2}}$, then

$$\forall k \ge \frac{3\alpha}{\sqrt{\kappa}}, \ F(x_k) - F^* \leqslant \frac{9}{4}e^{-2}M_0\left(\frac{8e}{3\sqrt{\kappa}}\alpha\right)^{\frac{2\alpha}{3}}k^{-\frac{2\alpha}{3}},$$

where $M_0 = F(x_0) - F^*$ denotes the potential energy of the system at initial time.