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Framework

Minimization problem

min
x∈RN

F (x) = f(x) + h(x),

where:

• f is a convex differentiable function having a L-Lipschitz gradient,

• h is a convex proper lower semicontinuous function,

• F has a non-empty set of minimizers X∗.
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Framework

Motivations

min
x∈RN

F (x),

Which algorithm is the most efficient according to the assumptions satisfied by F and the
expected accuracy?

→ Convergence analysis of the numerical schemes:

How fast does F (xk)− F ∗ decreases?
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Inertia in optimization

A classical algorithm: the proximal gradient method (Combettes and Wajs, ’05)

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Composite version of the Gradient Descent method:

∀k > 0, xk = xk−1 − s∇F (xk−1).

Convergence guarantees

If F is convex and s is sufficiently small:

F (xk)− F ∗ = O
(
k−1)

→ Simple but slow!
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Inertia in optimization

A classical algorithm: the proximal gradient method

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Illustration

X∗

•
x0

•
x1

•
x2

•
x3
•

x4
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Inertia in optimization

Introducing inertia

→ Apply the same transformation to a shifted point.

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + αk(xk − xk−1),

Illustration

X∗

•
•

•••

•
x0

•
x1•

y1•
x2•

y2
•
x3
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Inertia in optimization

Introducing inertia

→ Apply the same transformation to a shifted point.

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + αk(xk − xk−1),

Rising question

How to chose αk?

• Heavy-Ball schemes (Polyak,’64, Nesterov,’03, ...): constant friction → αk = α.

• FISTA (Beck and Teboulle,’09, Nesterov,’83): vanishing friction → αk = k−1
k+α−1

.
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Optimization and geometry

Strong convexity (SCµ)

F is µ-strongly convex if for all x ∈ RN , g : x 7→ F (x)− µ
2
∥x∥2 is convex.

Convergence rate of F (xk)− F ∗

Algorithm Convex SCµ

Proximal gradient method O
(
k−1

)
O

(
e−

µ
L
k
)

Heavy-Ball (constant
friction)

O
(
k−1

)
O

(
e−2

√
µ
L
k
)

FISTA (vanishing friction) O
(
k−2

)
O

(
k− 2α

3

)
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Optimization and geometry

Classical geometry assumptions

• Quadratic growth condition (G2
µ):

F has a quadratic growth around its set of minimizers if

∃µ > 0, ∀x ∈ RN ,
µ

2
d(x,X∗)2 ⩽ F (x)− F ∗.

Practical example: LASSO problem:

F (x) =
1

2
∥Ax− y∥2 + λ∥x∥1.

0 x

F (x)

µ
2
d(x,X∗)2

• Hölderian error bound (Hγ):
F has a γ-Hölderian growth around its set of minimizers (with γ > 2) if

∃K > 0, ∀x ∈ RN , Kd(x,X∗)γ ⩽ F (x)− F ∗.
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Optimization and geometry

Problem statement

Improved convergence rates for inertial methods already exist... if F has a unique minimizer:

Algorithm SCµ G2
µ and unique
minimizer

G2
µ

Proximal gradient
method

O
(
e−

µ
L
k
)

O
(
e−

µ
L
k
)

O
(
e−

µ
L
k
)

Heavy-Ball methods O
(
e−2

√
µ
L
k
)

O
(
e−(2−

√
2)
√

µ
L
k
)

O
(
e−

µ
L
k
)

FISTA O
(
k− 2α

3

)
O

(
k− 2α

3

)
O

(
k−2

)
→ FISTA restart schemes for G2

µ: O
(
e−

1
e

√
µ
L
k
)
without an uniqueness assumption!

Is this hypothesis necessary to get fast convergence rates?
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Inertia without uniqueness of the minimizers

Our strategy

Consider V-FISTA (Beck,’17, Nesterov,’03):

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

where F = f + h is such that µ
2
d(x,X∗)2 ⩽ F (x)− F ∗ for any x ∈ RN .

Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1

2
∥λ(xk − x∗) + xk − xk−1∥2
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Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1
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k) + xk − xk−1∥2

where x∗
k is the projection of xk onto the set of minimizers of F denoted X∗.
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Inertia without uniqueness of the minimizers

Our strategy

Consider V-FISTA (Beck,’17, Nesterov,’03):

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

where F = f + h is such that µ
2
d(x,X∗)2 ⩽ F (x)− F ∗ for any x ∈ RN .

Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1

2
∥λ(xk − x∗

k) + xk − xk−1∥2

where x∗
k is the projection of xk onto the set of minimizers of F denoted X∗.

→ Trickier calculations
→ No assumption on X∗ required!
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Inertia without uniqueness of the minimizers

Main results: V-FISTA

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

Theorem (Aujol, Dossal, L., Rondepierre,’24): If F satisfies G2
µ , s = 1

L
and α = 1− 5

3
√
3

√
µ
L

:

F (xk)− F ∗ = O
(
e
− 2

3
√

3

√
µ
L
k
)

• Uniqueness of the minimizer is not required.

• Theoretical guarantees for non optimal values of α.

• Better worst-case bound than any FISTA restart scheme: O
(
e−

1
e

√
µ
L
k
)
.

• α depends on µ
L
!
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Inertia without uniqueness of the minimizers

Main results: FISTA for G2
µ

∀k > 0,


xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk +
k − 1

k + α− 1
(xk − xk−1)

Theorem (Aujol, Dossal, L., Rondepierre,’24): If F satisfies G2
µ , s = 1

L
and α ⩾ 3 + 3√

2
:

F (xk)− F ∗ = O
(
k− 2α

3

)
• Uniqueness of the minimizer is not required.

• Finite time bound available.

• α can be parametrized according to the expected accuracy to get improved performance.
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Inertia without uniqueness of the minimizers

Main results: FISTA for Hγ

∀k > 0,


xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk +
k − 1

k + α− 1
(xk − xk−1)

Theorem (Aujol, Dossal, L., Rondepierre,’24): If F is coercive and there exists ε > 0, K > 0 and
γ > 2 such that F satisfies the following inequality for any minimizer x∗

∀x ∈ B(x∗, ε), Kd(x,X∗)γ ⩽ F (x)− F ∗,

then for α > 5 + 8
γ−2

:

F (xk)− F ∗ = O
(
k
− 2γ

γ−2

)
and ∥xk − xk−1∥ = O

(
k
− γ

γ−2

)

Corollary: Under the same assumptions, for any α > 5, the sequence (xk)k∈N converges strongly
to a minimizer of F .
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Conclusion

Take-away message

In the convex setting, inertia is still relevant for functions having multiple minimizers!

SCµ G2
µ Hγ Convexity

Best option HB HB FISTA FISTA

Pending questions:

• Could the Performance Estimation Problem approach (Drori and Teboulle,’14, Taylor,
Hendrickx and Glineur,’17, Taylor and Drori,’22 ...) allow to find tighter bounds?

• Heavy Ball methods require to know the growth parameter of F : could an adaptive strategy
be applied to avoid this issue?
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Conclusion

Thank you for your attention!

Preprints:

• Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball
Momentum for Non-Strongly Convex Optimization, 2024, arXiv preprint arXiv:2403.06930.

• Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong
Convergence of FISTA under a Weak Growth Condition, currently in writing.

My thesis manuscript (in french!):

• Hippolyte Labarrière, 2023, Étude de méthodes inertielles en optimisation et leur
comportement sous conditions de géométrie.

Website:
https://hippolytelbrrr.github.io/

https://hippolytelbrrr.github.io/


1/8

References I

J.-F. Aujol, C. Dossal, and A. Rondepierre.

Convergence rates of the heavy-ball method under the  lojasiewicz property.
Mathematical Programming, pages 1–60, 2022.

J.-F. Aujol, C. Dossal, and A. Rondepierre.

Fista is an automatic geometrically optimized algorithm for strongly convex functions.
Mathematical Programming, Apr 2023.

A. Beck.

First-order methods in optimization.
SIAM, 2017.

A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM journal on imaging sciences, 2(1):183–202, 2009.

Y. Drori and M. Teboulle.

Performance of first-order methods for smooth convex minimization: a novel approach.
Mathematical Programming, 145(1):451–482, Jun 2014.

G. Garrigos, L. Rosasco, and S. Villa.

Convergence of the forward-backward algorithm: beyond the worst-case with the help of geometry.
Mathematical Programming, pages 1–60, 2022.

I. Necoara, Y. Nesterov, and F. Glineur.

Linear convergence of first order methods for non-strongly convex optimization.
Mathematical Programming, 175(1):69–107, 2019.



2/8

References II

Y. Nesterov.

A method of solving a convex programming problem with convergence rate o(1/k2).
In Sov. Math. Dokl, volume 27, 1983.

W. Su, S. Boyd, and E. Candes.

A differential equation for modeling nesterov’s accelerated gradient method: theory and insights.
Advances in neural information processing systems, 27, 2014.

A. B. Taylor, J. M. Hendrickx, and F. Glineur.

Smooth strongly convex interpolation and exact worst-case performance of first-order methods.
Mathematical Programming, 161(1):307–345, Jan 2017.



3/8

A key tool: the continuous setting

→ Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent→ Gradient flow

xk = xk−1 − s∇F (xk−1)

⇐⇒ xk − xk−1

s
= −∇F (xk−1)

↓

ẋ(t) +∇F (x(t)) = 0.



4/8

A key tool: the continuous setting

Nesterov’s accelerated gradient→Asymptotic vanishing damping system (Su, Boyd
and Candès,2014)

∀k > 0,


xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk +
k − 1

k + α − 1
(xk − xk−1)

↓

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0

Heavy-Ball schemes→ Heavy-Ball Friction system

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + α(xk − xk−1),

↓
ẍ(t) + αC ẋ(t) +∇F (x(t)) = 0
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A key tool: the continuous setting

Why is this relevant?

• easier computations (derivatives),

• most of the time, convergence properties of the trajectories can be extended to the iterates
of the related scheme.

Back to the discrete setting

Challenging for the following reasons:

• no more derivative,

• several possible discretization choices,

• which condition on the stepsize?
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Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0

Classical Lyapunov energy for this system:

E(t) = F (x(t))− F ∗ +
1

2
∥λ(x(t)− x∗) + ẋ(t)∥2
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Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0

Classical Lyapunov energy for this system:

E(t) = F (x(t))− F ∗ +
1

2
∥λ(x(t)− x∗(t)) + ẋ(t)∥2

where x∗(t) is the projection of x(t) onto the set of minimizers of F denoted X∗.

→ The differentiability of E depends on the regularity of X∗!

If X∗ is sufficiently regular (e.g. polyhedral), several convergence results can be extended
without the uniqueness assumption (e.g. Siegel, ’19, Aujol, Dossal and Rondepierre, ’23).
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An ugly bound

Main results: V-FISTA

If F satisfies G2
µ, s = 1

L
α = 1− ω

√
κ where κ = µ

L
, ω ∈

(
0, 1√

κ

)
. Then, for any k ∈ N:

F (xk)− F ∗ ⩽
(
1 + (ω − τ)2 + (ω − τ)ωτ

√
κ
) (

1− τ
√
κ+ τ2κ

)k
(F (x0)− F ∗),

if (
1− ω

√
κ
)
τ3 − ω

(
2− ω

√
κ
)
τ2 + (ω2 + 2)τ − ω ⩽ 0.
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An other ugly bound

Main results: FISTA

If F satisfies G2
µ, s = 1

L
, α ⩾ 3 + 3√

2
, then

∀k ⩾
3α√
κ
, F (xk)− F ∗ ⩽

9

4
e−2M0

(
8e

3
√
κ
α

) 2α
3

k− 2α
3 ,

where M0 = F (x0)− F ∗ denotes the potential energy of the system at initial time.


