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Framework and motivations

Optimization, what is this?

→ Find a set of parameters that minimizes a quantity.

Find the route that minimizes
journey time. Find the training that leads to the best 100-meter

time.
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Framework and motivations

Minimization problem

min
x∈RN

F (x) = f(x) + h(x),

where:

• f is a convex differentiable function having a L-Lipschitz gradient,

• h is a convex proper lower semicontinuous function,

• F has a non-empty set of minimizers X∗.



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

Inertia between
convexity and
strong convexity

Adaptivity for
inertial schemes

Restart strategies

An other approach

Conclusion

4/35

Framework and motivations

Motivations

min
x∈RN

F (x),

Which algorithm is the most efficient according to the assumptions satisfied by F and the
expected accuracy?

→ Convergence analysis of the numerical schemes:

How fast does F (xk)− F ∗ decreases?
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Inertia

A classical algorithm: the proximal gradient method (Combettes and Wajs, ’05)

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Composite version of the Gradient Descent method:

∀k > 0, xk = xk−1 − s∇F (xk−1).

Convergence guarantees

If F is convex and s is sufficiently small:

F (xk)− F ∗ = O
(
k−1)

→ Simple but slow!
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Inertia in optimization

A classical algorithm: the proximal gradient method

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Illustration

X∗

•
x0

•
x1

•
x2

•
x3
•

x4



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

Inertia between
convexity and
strong convexity

Adaptivity for
inertial schemes

Restart strategies

An other approach

Conclusion

7/35

Inertia in optimization

A classical algorithm: the proximal gradient method

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Illustration

X∗

•
x0

•
x1

•
x2

•
x3
•

x4



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

Inertia between
convexity and
strong convexity

Adaptivity for
inertial schemes

Restart strategies

An other approach

Conclusion

7/35

Inertia in optimization

A classical algorithm: the proximal gradient method

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Illustration

X∗

•
x0

•
x1

•
x2

•
x3
•

x4



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

Inertia between
convexity and
strong convexity

Adaptivity for
inertial schemes

Restart strategies

An other approach

Conclusion

7/35

Inertia in optimization

A classical algorithm: the proximal gradient method

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Illustration

X∗

•
x0

•
x1

•
x2

•
x3

•
x4



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

Inertia between
convexity and
strong convexity

Adaptivity for
inertial schemes

Restart strategies

An other approach

Conclusion

7/35

Inertia in optimization

A classical algorithm: the proximal gradient method

∀k > 0, xk = proxsh (xk−1 − s∇f(xk−1)) .

Illustration

X∗

•
x0

•
x1

•
x2

•
x3
•

x4



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

Inertia between
convexity and
strong convexity

Adaptivity for
inertial schemes

Restart strategies

An other approach

Conclusion

8/35

Inertia

Introducing inertia

→ Apply the same transformation to a shifted point.

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + αk(xk − xk−1),

Illustration

X∗

•
•

•••

•
x0

•
x1•

y1•
x2•

y2
•
x3
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Inertia

Introducing inertia

→ Apply the same transformation to a shifted point.

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + αk(xk − xk−1),

Rising question

How to chose αk?

• Heavy-Ball schemes (Polyak,’64, Nesterov,’03, ...): constant friction → αk = α.

• FISTA (Beck and Teboulle,’09, Nesterov,’83): vanishing friction → αk = k−1
k+α−1

.
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Geometry of convex functions

Strong convexity (SCµ)

F is µ-strongly convex if for all x ∈ RN , g : x 7→ F (x)− µ
2
∥x∥2 is convex.

Convergence rate of F (xk)− F ∗

Algorithm Convex SCµ

Proximal gradient method O
(
k−1

)
O

(
e−

µ
L
k
)

Heavy-Ball (constant
friction)

O
(
k−1

)
O

(
e−2

√
µ
L
k
)

FISTA (vanishing friction) O
(
k−2

)
O

(
k− 2α

3

)
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Geometry of convex functions

Classical geometry assumptions

• Quadratic growth condition (G2
µ):

F has a quadratic growth around its set of minimizers if

∃µ > 0, ∀x ∈ RN ,
µ

2
d(x,X∗)2 ⩽ F (x)− F ∗.

Practical example: LASSO problem:

F (x) =
1

2
∥Ax− y∥2 + λ∥x∥1.

0 x

F (x)

µ
2
d(x,X∗)2

• Hölderian error bound (Hγ):
F has a γ-Hölderian growth around its set of minimizers (with γ > 2) if

∃K > 0, ∀x ∈ RN , Kd(x,X∗)γ ⩽ F (x)− F ∗.
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Inertia between convexity and strong convexity

Framework

min
x∈RN

F (x) for F satisfying some geometry assumption.

What did we know?

Algorithm SCµ G2
µ Hγ Convexity

PGD e−
µ
L
k k−1

Heavy-Ball e−2
√

µ
L
k k−1

FISTA k− 2α
3 k−2



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

Inertia between
convexity and
strong convexity

Adaptivity for
inertial schemes

Restart strategies

An other approach

Conclusion

13/35

Inertia between convexity and strong convexity

Framework

min
x∈RN

F (x) for F satisfying some geometry assumption.

What did we know?

Algorithm SCµ G2
µ Hγ Convexity

PGD e−
µ
L
k e−

µ
L
k k

− γ
γ−2 k−1

Heavy-Ball e−2
√

µ
L
k e−(2−

√
2)
√

µ
L
k k

− γ
γ−2 ∗ k−1

FISTA k− 2α
3 k− 2α

3 k
− 2γ

γ−2 k−2

If F has a unique minimizer!!

∗in the continuous setting (Begout et al., ’15).
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Inertia between convexity and strong convexity

Framework
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L
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− γ
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FISTA k− 2α
3 k− 2α

3 k
− 2γ

γ−2 k−2

If F has a unique minimizer!!

Is it really necessary?

∗in the continuous setting (Begout et al., ’15).
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Inertia between convexity and strong convexity

How to avoid the uniqueness assumption?

Our strategy

Consider V-FISTA (Beck,’17, Nesterov,’03):

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

where F = f + h is such that µ
2
d(x,X∗)2 ⩽ F (x)− F ∗ for any x ∈ RN .

Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1

2
∥λ(xk−) + xk − xk−1∥2
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{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

where F = f + h is such that µ
2
d(x,X∗)2 ⩽ F (x)− F ∗ for any x ∈ RN .

Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1

2
∥λ(xk − x∗

k) + xk − xk−1∥2

where x∗
k is the projection of xk onto the set of minimizers of F denoted X∗.
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Inertia between convexity and strong convexity

How to avoid the uniqueness assumption?

Our strategy

Consider V-FISTA (Beck,’17, Nesterov,’03):

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

where F = f + h is such that µ
2
d(x,X∗)2 ⩽ F (x)− F ∗ for any x ∈ RN .

Classical discrete Lyapunov energy for this system:

Ek = s(F (xk)− F ∗) +
1

2
∥λ(xk − x∗

k) + xk − xk−1∥2

where x∗
k is the projection of xk onto the set of minimizers of F denoted X∗.

→ Trickier calculations
→ No assumption on X∗ required!
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Inertia between convexity and strong convexity

Main results: V-FISTA

∀k > 0,

{
xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk + α(xk − xk−1)

Theorem (Aujol, Dossal, L., Rondepierre,’24): If F satisfies G2
µ , s = 1

L
and α = 1− 5

3
√
3

√
µ
L

:

F (xk)− F ∗ = O
(
e
− 2

3
√

3

√
µ
L
k
)

• Uniqueness of the minimizer is not required.

• Theoretical guarantees for non optimal values of α.

• Better worst-case bound than any FISTA restart scheme: O
(
e−

1
e

√
µ
L
k
)
.

• α depends on µ
L
!
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Inertia between convexity and strong convexity

Main results: FISTA for G2
µ

∀k > 0,


xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk +
k − 1

k + α− 1
(xk − xk−1)

Theorem (Aujol, Dossal, L., Rondepierre,’24): If F satisfies G2
µ , s = 1

L
and α ⩾ 3 + 3√

2
:

F (xk)− F ∗ = O
(
k− 2α

3

)
• Uniqueness of the minimizer is not required.

• Finite time bound available.

• α can be parametrized according to the expected accuracy to get improved performance.
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Inertia between convexity and strong convexity

Main results: FISTA for Hγ

∀k > 0,


xk = proxsh(yk−1 − s∇f(yk−1))

yk = xk +
k − 1

k + α− 1
(xk − xk−1)

Theorem (Aujol, Dossal, L., Rondepierre,’24): If F is coercive and there exists ε > 0, K > 0 and
γ > 2 such that F satisfies the following inequality for any minimizer x∗

∀x ∈ B(x∗, ε), Kd(x,X∗)γ ⩽ F (x)− F ∗,

then for α > 5 + 8
γ−2

:

F (xk)− F ∗ = O
(
k
− 2γ

γ−2

)
and ∥xk − xk−1∥ = O

(
k
− γ

γ−2

)

Corollary: Under the same assumptions, for any α > 5, the sequence (xk)k∈N converges strongly
to a minimizer of F .
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Inertia between convexity and strong convexity

What do we know now?

Algorithm SCµ G2
µ Hγ Convexity

PGD e−
µ
L
k e−

µ
L
k k

− γ
γ−2 k−1

Heavy-Ball e−2
√

µ
L
k e

− 2
3
√

3

√
µ
L
k

k
− γ

γ−2 k−1

FISTA k− 2α
3 k− 2α

3 k
− 2γ

γ−2 k−2

Take-away message

Inertia is not impacted by the non uniqueness of the minimizers.

SCµ G2
µ Hγ Convexity

Best option HB HB FISTA FISTA

Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball Momentum for Non-Strongly Convex Optimization,
2024, arXiv preprint arXiv:2403.06930.

Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong Convergence of FISTA Iterates under Hölderian and

Quadratic Growth Conditions, 2024, arxiv:2407.17063.
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Restart strategies

Framework

min
x∈RN

F (x),

where F satisfies a growth condition (SCµ or G2
µ) and the growth parameter µ is not known.

First-order methods

In this setting:

• proximal gradient method: F (xk)− F ∗ = O
(
e−

µ
L
k
)
,

• Heavy-Ball methods: F (xk)− F ∗ = O
(
e−K

√
µ
L
k
)
if µ is known,

• FISTA (Beck and Teboulle,’09, Nesterov,’83):

∀k > 0,


xk = proxsh(yk−1 − s∇f(yk−1)),

yk = xk +
k − 1

k + 2
(xk − xk−1)

→ F (xk)− F ∗ = O
(
k−2

)
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Restart strategies

Restarting FISTA, why?

• to take advantage of inertia,

• to avoid oscillations.

Figure: Projection of the trajectory of the iterates of FISTA (left) and FISTA restart (right) for a
least-squares problem (N = 20).
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Restart strategies

Restarting FISTA, how?

Algorithm 1 : FISTA restart

Require: x0 ∈ RN , y0 = x0, k = 0, i = 0.
repeat

k = k + 1, i = i+ 1
xk = proxsh(yk−1 − s∇f(yk−1))
if Restart condition is True then

i = 1
end if
yk = xk + i−1

i+2
(xk − xk−1)

until Exit condition is True

→ Cutting inertia is equivalent to restarting the algorithm from the last iterate.
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Restart strategies

Empiric FISTA restart (O’Donoghue and Candès, ’15, Beck and Teboulle, ’09)

Restart under some exit condition

• on F :
F (xk) > F (xk−1),

• on ∇F :
⟨∇F (yk), xk − xk−1⟩ > 0.

Fixed FISTA restart (Nesterov, ’13, O’Donoghue and Candès, ’15...)

Restart every k∗ iterations where k∗ is defined according to the growth parameter µ. If

k∗ =
⌊
2e
√

L
µ

⌋
:

F (xk)− F ∗ = O
(
e−

1
e

√
µ
L
k
)
.

Generalization: Scheduled restarts, Roulet and D’Aspremont ’17.
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Restart strategies

Adaptive FISTA restart

Restart according to the geometry of F and previous iterations.

• Fercoq and Qu, ’19: F (xk)− F ∗ =O

exp

−
√

2−1

2
√

e

(
2−
√

µ
µ0

)√ µ
L

k


.

• Alamo et al., ’19: F (xk)− F ∗ = O
(
e−

1
16

√
µ
L
k
)
.

• Alamo et al., ’22: F (xk)− F ∗ = O
(
e−

ln(15)
4e

√
µ
L
k
)
, where ln(15)

4e
≈ 1

4
.

• Renegar and Grimmer, ’22: F (xk)− F ∗ = O
(
e
− 1

2
√

2

√
µ
L
k
)
.
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Restart strategies

Introduction of an automatic restart scheme (Aujol, Dossal, L., Rondepierre,’21)

Features: a restart condition that

• does not require to know the growth parameter µ,

• ensures a fast convergence of the method: F (xk)− F ∗ = O(e−
1
12

√
µ
L
k),

• is not computationnaly expensive,

• is easy to implement.

Strategy

• to estimate µ at each restart,

• to adapt the number of iterations of the following restart according to this estimation.

Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. FISTA restart using an automatic estimation of the growth

parameter, 2021, 〈hal-03153525v4〉.
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Restart strategies

Algorithm 2 : Automatic FISTA restart

Require: r0 ∈ RN , j = 1, C = 6.38.
n0 = ⌊2C⌋
r1 = FISTA(r0, n0)
n1 = ⌊2C⌋
repeat

j = j + 1
rj = FISTA(rj−1, nj−1)

µ̃j = min
i∈N∗
i<j

4L

(ni−1 + 1)2
F (ri−1)− F (rj)

F (ri)− F (rj)
Estimation of the parameter µ.

if nj−1 ⩽ C
√

L
µ̃j

then

nj = 2nj−1 Update of the number of iterations per restart.
end if

until exit condition is satisfied
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Restart strategies

Summary:

Algorithm Convergence rate

Forward-Backward O
(
e−

µ
L
k
)

V-FISTA O
(
e
− 9

20

√
µ
L
k
)

Optimal FISTA restart O
(
e
− 1

e

√
µ
L
k
)

Empirical FISTA restart O(k−2)

Fercoq and Qu ’19 O

e

−
√

2−1

2
√

e(2−
√

µ
µ0

)

√ µ
L

k


Alamo et al. ’19 O
(
e
− 1

16

√
µ
L
k
)

Alamo et al. ’22 O
(
e
− ln(15)

4e

√
µ
L
k
)

Renegar and Grimmer ’22 O
(
e
− 1

2
√

2

√
µ
L
k
)

Automatic FISTA restart O
(
e
− 1

12

√
µ
L
k
)
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Restart strategies

Image inpainting:

min
x

F (x) :=
1

2
∥Mx− y∥2 + λ∥Tx∥1,

where M is a mask operator and T is an orthogonal transformation ensuring that Tx0 is sparse.
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Restart strategies

Image inpainting:
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Restart strategies

What if the Lipschitz constant L is not known?

Combining backtracking and restarting: Free-FISTA (Aujol, Calatroni, Dossal, L.,
Rondepierre, ’24)

By combining a backtracking strategy and a restarting strategy, Free-FISTA automatically
estimates µ and L.

• Still efficient if L is not known.

• Adaptation to the local geometry of F .

• Convergence guarantees: F (xk)− F ∗ = O
(
e−

√
ρ

12

√
µ
L
k
)
.

Jean-François Aujol, Luca Calatroni, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Parameter-Free FISTA by Adaptive Restart and
Backtracking, 2024, SIAM Journal on Optimization.
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An other approach

FISTA is far from optimal for functions satisfying strong growth conditions!

Recall

Algorithm SCµ G2
µ

FISTA k− 2α
3 k− 2α

3

Optimal FISTA restart e−
1
e

√
µ
L
k e−

1
e

√
µ
L
k
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An other approach

FISTA is far from optimal for functions satisfying strong growth conditions!

Recall

Algorithm SCµ G2
µ

FISTA k− 2α
3 k− 2α

3

Optimal FISTA restart e−
1
e

√
µ
L
k e−

1
e

√
µ
L
k

V-FISTA (HB) e−
√

µ
L
k e

− 2
3
√

3

√
µ
L
k
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An other approach

Behavior of the friction parameter

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + αk(xk − xk−1),

→Friction parameter: 1− αk
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An other approach

Behavior of the friction parameter

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + αk(xk − xk−1),

→Friction parameter: 1− αk

Keep piecewise constant friction to be faster!



Key concepts and
mathematical tools

Inertia

Geometry of convex
functions

Inertia between
convexity and
strong convexity

Adaptivity for
inertial schemes

Restart strategies

An other approach

Conclusion

33/35

An other approach

An adaptive procedure for fast methods (L., 2024)

Consider a method A generating (xk)k∈N such that

F (xk)− F ∗ ⩽ Ae−B
√

µ
L
k (F (x0)− F ∗)

for some A,B > 0 if µ
L

is available.
→ An adaptive scheme:

• that allows to apply A when µ
L

is not known with theoretical guarantees.

• that can be combined with heuristic techniques (O’Donoghue and Candès, ’15) for improved
performance.

• which can be extended for methods involving backtracking on L (losing the theoretical
guarantees).

Hippolyte Labarrière. Adaptive techniques for linearly fast methods with unknown condition number, currently in writing.
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Conclusion

Take-away messages

· Inertia is not impacted by the non uniqueness of the minimizers.
SCµ G2

µ Hγ Convexity
Best option HB HB FISTA FISTA

· If the condition number is not known → FISTA restart... or Adaptive V-FISTA!

Pending questions:

• Could the Performance Estimation Problem (PEP) approach (Drori and Teboulle,’14, Taylor,
Hendrickx and Glineur,’17, Taylor and Drori,’22 ...) allow to find tighter bounds?

• Then, could it help to build faster adaptive schemes?

• Can we obtain better convergence guarantees for adaptive step-size methods (Malitsky and
Mishchenko,’20,’24, Barzilai-Borwein stepsize) under growth conditions?
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Conclusion

Thank you for your attention!

Publications and preprints:

• Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. FISTA restart using an

automatic estimation of the growth parameter, 2021, 〈hal-03153525v4〉.

• Jean-François Aujol, Luca Calatroni, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre.
Parameter-Free FISTA by Adaptive Restart and Backtracking, 2024, SIAM Journal on Optimization.

• Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball
Momentum for Non-Strongly Convex Optimization, 2024, arXiv preprint arXiv:2403.06930.

• Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong Convergence of
FISTA Iterates under Hölderian and Quadratic Growth Conditions, 2024, arxiv:2407.17063.

My thesis manuscript (in french!):

• Hippolyte Labarrière, 2023, Étude de méthodes inertielles en optimisation et leur comportement sous
conditions de géométrie.

Website:
https://hippolytelbrrr.github.io/

https://hippolytelbrrr.github.io/
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The continuous setting

→ Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent→ Gradient flow

xk = xk−1 − s∇F (xk−1)

⇐⇒ xk − xk−1

s
= −∇F (xk−1)

↓

ẋ(t) +∇F (x(t)) = 0.
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The continuous setting

Nesterov’s accelerated gradient→Asymptotic vanishing damping system (Su, Boyd
and Candès, ’14)

∀k > 0,


xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk +
k − 1

k + α − 1
(xk − xk−1)

↓

ẍ(t) +
α

t
ẋ(t) +∇F (x(t)) = 0

Heavy-Ball schemes→ Heavy-Ball Friction system

∀k > 0,

{
xk = proxsh (yk−1 − s∇f(yk−1)) ,

yk = xk + α(xk − xk−1),

↓
ẍ(t) + αC ẋ(t) +∇F (x(t)) = 0
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The continuous setting

Why is this relevant?

• easier computations (derivatives),

• most of the time, convergence properties of the trajectories can be extended to the iterates
of the related scheme.

Back to the discrete setting

Challenging for the following reasons:

• no more derivative,

• several possible discretization choices,

• which condition on the stepsize?
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Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0

Classical Lyapunov energy for this system:

E(t) = F (x(t))− F ∗ +
1

2
∥λ(x(t)− x∗) + ẋ(t)∥2
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Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

ẍ(t) + αẋ(t) +∇F (x(t)) = 0

Classical Lyapunov energy for this system:

E(t) = F (x(t))− F ∗ +
1

2
∥λ(x(t)− x∗(t)) + ẋ(t)∥2

where x∗(t) is the projection of x(t) onto the set of minimizers of F denoted X∗.

→ The differentiability of E depends on the regularity of X∗!

If X∗ is sufficiently regular (e.g. polyhedral), several convergence results can be extended
without the uniqueness assumption (e.g. Siegel, ’19, Aujol, Dossal and Rondepierre, ’23).
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An ugly bound

Main results: V-FISTA

If F satisfies G2
µ, s = 1

L
α = 1− ω

√
κ where κ = µ

L
, ω ∈

(
0, 1√

κ

)
. Then, for any k ∈ N:

F (xk)− F ∗ ⩽
(
1 + (ω − τ)2 + (ω − τ)ωτ

√
κ
) (

1− τ
√
κ+ τ2κ

)k
(F (x0)− F ∗),

if (
1− ω

√
κ
)
τ3 − ω

(
2− ω

√
κ
)
τ2 + (ω2 + 2)τ − ω ⩽ 0.
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An other ugly bound

Main results: FISTA

If F satisfies G2
µ, s = 1

L
, α ⩾ 3 + 3√

2
, then

∀k ⩾
3α√
κ
, F (xk)− F ∗ ⩽

9

4
e−2M0

(
8e

3
√
κ
α

) 2α
3

k− 2α
3 ,

where M0 = F (x0)− F ∗ denotes the potential energy of the system at initial time.


