Key concepts and mathematical tools

Inertia Geometry of

functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

An other approach

Conclusion

Inertia in Optimization: Acceleration and Adaptivity

Hippolyte Labarrière

Joint work with Jean-François Aujol, Charles Dossal and Aude Rondepierre

Séminaire Machine Learning and Signal Processing ENS Lyon 22 October 2024

Framework and motivations

Key concepts and mathematical tool

Inertia Geometry of con-

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

An other approach

Conclusion

Optimization, what is this?

\rightarrow Find a set of parameters that minimizes a quantity.

Find the route that minimizes journey time.

Find the training that leads to the best 100-meter time.

Framework and motivations

Minimization problem

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

where:

• f is a convex differentiable function having a L-Lipschitz gradient,

- *h* is a convex proper lower semicontinuous function,
- F has a non-empty set of minimizers X^* .

Framework and motivations

Key concepts and mathematical tools

Inertia Geometry of c

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

Motivations

Which algorithm is the most efficient according to the **assumptions** satisfied by F and the **expected accuracy**?

 $\min_{x \in \mathbb{R}^N} F(x),$

 \rightarrow Convergence analysis of the numerical schemes:

How fast does $F(x_k) - F^*$ decreases?

Outline

Key concepts and mathematical tools

Inertia Geometry of conv functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

Key concepts and mathematical tools Inertia Geometry of convex functions

2 Inertia between convexity and strong convexity

 Adaptivity for inertial schemes Restart strategies An other approach

Key concepts and mathematical too

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

A classical algorithm: the proximal gradient method (Combettes and Wajs, '05)

$$\forall k > 0, \ x_k = \operatorname{prox}_{sh} \left(x_{k-1} - s \nabla f(x_{k-1}) \right).$$

Composite version of the Gradient Descent method:

$$\forall k > 0, \ x_k = x_{k-1} - s \nabla F(x_{k-1}).$$

Key concepts and mathematical too

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

A classical algorithm: the proximal gradient method (Combettes and Wajs, '05)

$$\forall k > 0, \ x_k = \operatorname{prox}_{sh} \left(x_{k-1} - s \nabla f(x_{k-1}) \right).$$

Composite version of the Gradient Descent method:

$$\forall k > 0, \ x_k = x_{k-1} - s \nabla F(x_{k-1}).$$

Convergence guarantees

If F is convex and s is sufficiently small:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-1}\right)$$

 \rightarrow Simple but slow!

A classical algorithm: the proximal gradient method

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

$$\forall k > 0, \ \mathbf{x_k} = \operatorname{prox}_{sh}\left(\mathbf{x_{k-1}} - s\nabla f(\mathbf{x_{k-1}})\right)$$

A classical algorithm: the proximal gradient method

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

$\forall k > 0, \ \mathbf{x}_{k} = \operatorname{prox}_{sh} \left(\mathbf{x}_{k-1} - s \nabla f(\mathbf{x}_{k-1}) \right).$

A classical algorithm: the proximal gradient method

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

$\forall k > 0, \ \mathbf{x}_{k} = \operatorname{prox}_{sh} \left(\mathbf{x}_{k-1} - s \nabla f(\mathbf{x}_{k-1}) \right).$

A classical algorithm: the proximal gradient method

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

$\forall k > 0, \ \mathbf{x}_{k} = \operatorname{prox}_{sh} \left(\mathbf{x}_{k-1} - s \nabla f(\mathbf{x}_{k-1}) \right).$

A classical algorithm: the proximal gradient method

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

$$\forall k > 0, \ \mathbf{x_k} = \operatorname{prox}_{sh}\left(\mathbf{x_{k-1}} - s\nabla f(\mathbf{x_{k-1}})\right)$$

Introducing inertia

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Key concepts and mathematical tool

Inertia

- Geometry of convex functions
- Inertia between convexity and strong convexity
- Adaptivity for inertial schemes Restart strategies

Conclusion

 \rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} \boldsymbol{x_k} = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = \boldsymbol{x_k} + \alpha_k (\boldsymbol{x_k} - \boldsymbol{x_{k-1}}), \end{cases}$$

Introducing inertia

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies

Conclusion

 \rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Introducing inertia

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies

Conclusion

\rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Introducing inertia

 \rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Rising question

How to chose α_k ?

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Introducing inertia

 \rightarrow Apply the same transformation to a shifted point.

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}$$

Rising question

How to chose α_k ?

- Heavy-Ball schemes (Polyak, '64, Nesterov, '03, ...): constant friction $\rightarrow \alpha_k = \alpha$.
- **FISTA** (Beck and Teboulle, '09, Nesterov, '83): vanishing friction $\rightarrow \alpha_k = \frac{k-1}{k+\alpha-1}$.

Geometry of convex functions

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

Strong convexity (SC_{μ})

F is μ -strongly convex if for all $x \in \mathbb{R}^N$, $g: x \mapsto F(x) - \frac{\mu}{2} ||x||^2$ is convex.

Convergence rate of $F(x_k) - F^*$

Algorithm	Convex	\mathcal{SC}_{μ}
Proximal gradient method	$\mathcal{O}\left(k^{-1} ight)$	$\mathcal{O}\left(e^{-rac{\mu}{L}k} ight)$
Heavy-Ball (constant friction)	$\mathcal{O}\left(k^{-1} ight)$	$\mathcal{O}\left(e^{-2\sqrt{rac{\mu}{L}}k} ight)$
FISTA (vanishing friction)	$\mathcal{O}\left(k^{-2} ight)$	$\mathcal{O}\left(k^{-rac{2lpha}{3}} ight)$

Geometry of convex functions

Classical geometry assumptions

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

• Quadratic growth condition (\mathcal{G}^2_{μ}):

 ${\boldsymbol{F}}$ has a quadratic growth around its set of minimizers if

$$\exists \mu > 0, \ \forall x \in \mathbb{R}^N, \ \frac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*.$$

Practical example: LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - y||^2 + \lambda ||x||_1.$$

Geometry of convex functions

Classical geometry assumptions

- Key concepts and mathematical tools
- Inertia
- Geometry of convex functions
- Inertia between convexity and strong convexity
- Adaptivity for inertial schemes Restart strategies
- An other appro-
- Conclusion

• Quadratic growth condition (\mathcal{G}^2_{μ}) :

F has a quadratic growth around its set of minimizers if

$$\exists \mu > 0, \ \forall x \in \mathbb{R}^N, \ \frac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*.$$

Practical example: LASSO problem:

$$F(x) = \frac{1}{2} ||Ax - y||^2 + \lambda ||x||_1.$$

• Hölderian error bound (\mathcal{H}^{γ}) :

F has a γ -Hölderian growth around its set of minimizers (with $\gamma>2$) if

 $\exists K > 0, \ \forall x \in \mathbb{R}^N, \ Kd(x, X^*)^{\gamma} \leqslant F(x) - F^*.$

Outline

Key concepts and mathematical tools

Inertia Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Key concepts and mathematical tools Inertia Geometry of convex functions

2 Inertia between convexity and strong convexity

3 Adaptivity for inertial schemes Restart strategies An other approach

Key concepts and mathematical too

Inertia Geometry of conve functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Framework

 $\min_{x\in\mathbb{R}^N}F(x) \text{ for } F \text{ satisfying some geometry assumption}.$

What did we know?

Algorithm	\mathcal{SC}_{μ}	\mathcal{G}^2_μ	\mathcal{H}^γ	Convexity
PGD	$e^{-\frac{\mu}{L}k}$			k^{-1}
Heavy-Ball	$e^{-2\sqrt{\frac{\mu}{L}}k}$			k^{-1}
FISTA	$k^{-rac{2lpha}{3}}$			k^{-2}

Key concepts and mathematical too

Inertia Geometry of conve

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Framework

 $\min_{x \in \mathbb{R}^N} F(x)$ for F satisfying some geometry assumption.

What did we know?

Algorithm	\mathcal{SC}_{μ}	\mathcal{G}^2_μ	\mathcal{H}^γ	Convexity
PGD	$e^{-\frac{\mu}{L}k}$	$e^{-\frac{\mu}{L}k}$	$k^{-rac{\gamma}{\gamma-2}}$	k^{-1}
Heavy-Ball	$e^{-2\sqrt{\frac{\mu}{L}}k}$	$e^{-(2-\sqrt{2})\sqrt{\frac{\mu}{L}}k}$	$k^{-rac{\gamma}{\gamma-2}*}$	k^{-1}
FISTA	$k^{-\frac{2\alpha}{3}}$	$k^{-rac{2lpha}{3}}$	$k^{-rac{2\gamma}{\gamma-2}}$	k^{-2}

If F has a unique minimizer!!

*in the continuous setting (Begout et al., '15).

Framework

Key concepts and mathematical tools

Inertia Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

 $\min_{x \in \mathbb{R}^N} F(x)$ for F satisfying some geometry assumption.

What did we know?

Algorithm	\mathcal{SC}_{μ}	\mathcal{G}^2_μ	\mathcal{H}^γ	Convexity
PGD	$e^{-\frac{\mu}{L}k}$	$e^{-\frac{\mu}{L}k}$	$k^{-rac{\gamma}{\gamma-2}}$	k^{-1}
Heavy-Ball	$e^{-2\sqrt{\frac{\mu}{L}}k}$	$e^{-(2-\sqrt{2})\sqrt{\frac{\mu}{L}}k}$	$k^{-rac{\gamma}{\gamma-2}}*$	k^{-1}
FISTA	$k^{-\frac{2\alpha}{3}}$	$k^{-rac{2lpha}{3}}$	$k^{-rac{2\gamma}{\gamma-2}}$	k^{-2}

If F has a unique minimizer!!

Is it really necessary?

^{*}in the continuous setting (Begout et al., '15).

Key concepts and mathematical tools

Inertia Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

How to avoid the uniqueness assumption?

Our strategy

Consider V-FISTA (Beck,'17, Nesterov,'03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

where F = f + h is such that $\frac{\mu}{2}d(x, X^*)^2 \leq F(x) - F^*$ for any $x \in \mathbb{R}^N$.

Key concepts and mathematical tools

Inertia Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

How to avoid the uniqueness assumption?

Consider V-FISTA (Beck,'17, Nesterov,'03):

Our strategy

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

where F = f + h is such that $\frac{\mu}{2}d(x, X^*)^2 \leq F(x) - F^*$ for any $x \in \mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_{k} = s(F(x_{k}) - F^{*}) + \frac{1}{2} \|\lambda(x_{k} - x^{*}) + x_{k} - x_{k-1}\|^{2}$$

Key concepts and mathematical tools

Inertia Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

How to avoid the uniqueness assumption?

Our strategy

Consider V-FISTA (Beck,'17, Nesterov,'03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

where F = f + h is such that $\frac{\mu}{2}d(x, X^*)^2 \leq F(x) - F^*$ for any $x \in \mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_{k} = s(F(x_{k}) - F^{*}) + \frac{1}{2} \|\lambda(x_{k} - \boldsymbol{x}_{k}^{*}) + x_{k} - x_{k-1}\|^{2}$$

where x_k^* is the projection of x_k onto the set of minimizers of F denoted X^* .

How to avoid the uniqueness assumption?

Key concepts and mathematical tools

Inertia Geometry of conve

Inertia between convexity and strong convexity

Adaptivity for inertial scheme

Restart strategies An other approach

Conclusion

Our strategy

Consider V-FISTA (Beck,'17, Nesterov,'03):

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1}))\\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}$$

where F = f + h is such that $\frac{\mu}{2}d(x, X^*)^2 \leq F(x) - F^*$ for any $x \in \mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$\mathcal{E}_{k} = s(F(x_{k}) - F^{*}) + \frac{1}{2} \|\lambda(x_{k} - \boldsymbol{x}_{k}^{*}) + x_{k} - x_{k-1}\|^{2}$$

where x_k^* is the projection of x_k onto the set of minimizers of F denoted X^* .

 \rightarrow Trickier calculations \rightarrow No assumption on X^* required!

Main results: V-FISTA

Inertia between convexity and strong convexity

$$/k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + lpha(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, 24): If F satisfies \mathcal{G}^2_{μ} , $s = \frac{1}{L}$ and $\alpha = 1 - \frac{5}{3\sqrt{3}}\sqrt{\frac{\mu}{L}}$:

$$F(x_k) - F^* = \mathcal{O}\left(e^{-\frac{2}{3\sqrt{3}}\sqrt{\frac{\mu}{L}}k}\right)$$

- Uniqueness of the minimizer is not required.
- Theoretical guarantees for non optimal values of α.
- Better worst-case bound than any FISTA restart scheme: $\mathcal{O}\left(e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}k}}\right)$.
- α depends on $\frac{\mu}{L}!$

Key concepts and mathematical too

Inertia Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Main results: FISTA for \mathcal{G}^2_μ

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha - 1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, 24): If F satisfies \mathcal{G}^2_{μ} , $s = \frac{1}{L}$ and $\alpha \ge 3 + \frac{3}{\sqrt{2}}$:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\alpha}{3}}\right)$$

- Uniqueness of the minimizer is not required.
- Finite time bound available.
- α can be parametrized according to the expected accuracy to get improved performance.

Main results: FISTA for \mathcal{H}^{γ}

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha - 1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If F is coercive and there exists $\varepsilon > 0$, K > 0 and $\gamma > 2$ such that F satisfies the following inequality for any minimizer x^*

$$\forall x \in B(x^*, \varepsilon), \ Kd(x, X^*)^{\gamma} \leqslant F(x) - F^*,$$

then for $\alpha > 5 + \frac{8}{\gamma - 2}$:

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\gamma}{\gamma-2}}\right)$$
 and $\|x_k - x_{k-1}\| = \mathcal{O}\left(k^{-\frac{\gamma}{\gamma-2}}\right)$

Key concepts and mathematical tools

Inertia Geometry of conve

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Main results: FISTA for \mathcal{H}^{γ}

$$\forall k > 0, \begin{cases} x_k = \mathsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \frac{k-1}{k+\alpha - 1}(x_k - x_{k-1}) \end{cases}$$

Theorem (Aujol, Dossal, L., Rondepierre, '24): If F is coercive and there exists $\varepsilon > 0$, K > 0 and $\gamma > 2$ such that F satisfies the following inequality for any minimizer x^*

$$\forall x \in B(x^*, \varepsilon), \ Kd(x, X^*)^{\gamma} \leqslant F(x) - F^*,$$

then for $\alpha > 5 + \frac{8}{\gamma - 2}$:

Inertia between convexity and strong convexity

$$F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\gamma}{\gamma-2}}\right)$$
 and $\|x_k - x_{k-1}\| = \mathcal{O}\left(k^{-\frac{\gamma}{\gamma-2}}\right)$

Corollary: Under the same assumptions, for any $\alpha > 5$, the sequence $(x_k)_{k \in \mathbb{N}}$ converges strongly to a minimizer of F.

What do we know now?

Key		cepts	and
mat	hem	atical	tool

Inertia Geometry of conve functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Algorithm	\mathcal{SC}_{μ}	\mathcal{G}^2_μ	\mathcal{H}^γ	Convexity
PGD	$e^{-\frac{\mu}{L}k}$	$e^{-\frac{\mu}{L}k}$	$k^{-rac{\gamma}{\gamma-2}}$	k^{-1}
Heavy-Ball	$e^{-2\sqrt{\frac{\mu}{L}}k}$	$e^{-rac{2}{3\sqrt{3}}\sqrt{rac{\mu}{L}}k}$	$k^{-rac{\gamma}{\gamma-2}}$	k^{-1}
FISTA	$k^{-\frac{2\alpha}{3}}$	$k^{-rac{2lpha}{3}}$	$k^{-rac{2\gamma}{\gamma-2}}$	k^{-2}

Take-away message

Inertia is not impacted by the non uniqueness of the minimizers.

	\mathcal{SC}_{μ}	\mathcal{G}^2_μ	\mathcal{H}^γ	Convexity
Best option	HB	HB	FISTA	FISTA

Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball Momentum for Non-Strongly Convex Optimization, 2024, arXiv preprint arXiv:2403.06930.

Jean-François Aujol, Charles Dossal, <u>Hippolyte Labarrière</u>, Aude Rondepierre. Strong Convergence of FISTA Iterates under Hölderian and Quadratic Growth Conditions, 2024, arxiv:2407.17063.

Outline

Key concepts and mathematical tools

Inertia Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Key concepts and mathematical tools Inertia Geometry of convex functions

Inertia between convexity and strong convexity

 Adaptivity for inertial schemes Restart strategies An other approach

Framework

Key concepts and mathematical tools

Inertia

Geometry of conve functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

$\min_{x \in \mathbb{R}^N} F(x),$

where F satisfies a growth condition $(\mathcal{SC}_{\mu} \text{ or } \mathcal{G}_{\mu}^2)$ and the growth parameter μ is not known.

First-order methods

In this setting:

- proximal gradient method: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$,
- Heavy-Ball methods: $F(x_k) F^* = O\left(e^{-K\sqrt{\frac{\mu}{L}}k}\right)$ if μ is known,
- **FISTA** (Beck and Teboulle,'09, Nesterov,'83):

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})), \\ y_k = x_k + \frac{k-1}{k+2}(x_k - x_{k-1}) \\ \to F(x_k) - F^* = \mathcal{O}\left(k^{-2}\right) \end{cases}$$

Key concepts and mathematical tools

- Inertia
- Geometry of convex functions
- Inertia between convexity and strong convexity
- Adaptivity for inertial scheme
- Restart strategies An other approach
- Conclusion

Restarting FISTA, why?

- to take advantage of inertia,
- to avoid oscillations.

Figure: Projection of the trajectory of the iterates of FISTA (left) and FISTA restart (right) for a least-squares problem (N = 20).

Key concepts and mathematical tools

Inertia

```
Geometry of convex
functions
```

Inertia between convexity and strong convexity

Adaptivity for inertial scheme

Restart strategies An other approach

Conclusion

Restarting FISTA, how?

Algorithm 1 : FISTA restart

Require: $x_0 \in \mathbb{R}^N$, $y_0 = x_0$, k = 0, i = 0. **repeat** k = k + 1, i = i + 1 $x_k = \operatorname{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1}))$ **if** Restart condition is True **then** i = 1**end if**

 $y_k = x_k + rac{i-1}{i+2}(x_k - x_{k-1})$ until Exit condition is True

 \rightarrow Cutting inertia is equivalent to restarting the algorithm from the last iterate.

Key concepts and mathematical tools

Inertia Geometry (

functions

Inertia between convexity and strong convexity

Adaptivity for inertial scheme

Restart strategies An other approach

Conclusion

Empiric FISTA restart (O'Donoghue and Candès, '15, Beck and Teboulle, '09)

Restart under some exit condition

• on *F*:

• on ∇F :

$$F(x_k) > F(x_{k-1}),$$

 $\langle \nabla F(y_k), x_k - x_{k-1} \rangle > 0.$

Key concepts and mathematical tools

Inertia Geometry of

functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

Empiric FISTA restart (O'Donoghue and Candès, '15, Beck and Teboulle, '09)

Restart under some exit condition

• on *F*:

 $F(x_k) > F(x_{k-1}),$

• on ∇F :

$$\langle \nabla F(y_k), x_k - x_{k-1} \rangle > 0.$$

Fixed FISTA restart (Nesterov, '13, O'Donoghue and Candès, '15...)

Restart every k^* iterations where k^* is defined according to the growth parameter $\mu.$ If $k^* = \left\lfloor 2e\sqrt{\frac{L}{\mu}} \right\rfloor:$

$$F(x_k) - F^* = \mathcal{O}\left(e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}\right)$$

Generalization: Scheduled restarts, Roulet and D'Aspremont '17.

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial scheme

Restart strategies An other approach

Conclusion

Adaptive FISTA restart

Restart according to the geometry of F and previous iterations.

- Fercoq and Qu, '19: $F(x_k) F^* = o\left(\exp\left(-\frac{\sqrt{2}-1}{2\sqrt{e}\left(2-\sqrt{\frac{\mu}{\mu_0}}\right)}\sqrt{\frac{\mu}{L}}k\right)\right).$
- Alamo et al., '19: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{1}{16}\sqrt{\frac{\mu}{L}}k}\right)$.
- Alamo et al., '22: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{\ln(15)}{4e}\sqrt{\frac{\mu}{L}}k}\right)$, where $\frac{\ln(15)}{4e} \approx \frac{1}{4}$.
- Renegar and Grimmer, '22: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{1}{2\sqrt{2}}\sqrt{\frac{\mu}{L}}k}\right).$

Key concepts and mathematical tools

- Inertia Geometry of
- Geometry of convex functions
- Inertia between convexity and strong convexity
- Adaptivity for inertial schemes
- Restart strategies An other approach
- Conclusion

Introduction of an automatic restart scheme (Aujol, Dossal, L., Rondepierre,'21)

Features: a restart condition that

- does not require to know the growth parameter μ ,
- ensures a fast convergence of the method: $F(x_k) F^* = \mathcal{O}(e^{-\frac{1}{12}\sqrt{\frac{\mu}{L}}k})$,
- is not computationnaly expensive,
- is easy to implement.

Strategy

- to estimate μ at each restart,
- to adapt the number of iterations of the following restart according to this estimation.

Jean-François Aujol, Charles Dossal, <u>Hippolyte Labarrière</u>, Aude Rondepierre. FISTA restart using an automatic estimation of the growth parameter, 2021, (hal-03153525v4).

Key concepts and mathematical tool

Inertia

Geometry of conve functions

Inertia between convexity and strong convexity

Adaptivity for inertial scheme

Restart strategies An other approach

Conclusion

Algorithm 2 : Automatic FISTA restart

Require: $r_0 \in \mathbb{R}^N$, j = 1, C = 6.38. $n_0 = |2C|$ $r_1 = \mathsf{FISTA}(r_0, n_0)$ $n_1 = |2C|$ repeat i = i + 1 $r_i = \mathsf{FISTA}(r_{i-1}, n_{i-1})$ $\tilde{\mu}_j = \min_{i \in \mathbb{N}^*} \frac{4L}{(n_{i-1}+1)^2} \frac{F(r_{i-1}) - F(r_j)}{F(r_i) - F(r_j)}$ Estimation of the parameter μ . if $n_{j-1} \leq C \sqrt{\frac{L}{\tilde{\mu}_i}}$ then $n_{i} = 2n_{i-1}$ Update of the number of iterations per restart. end if until exit condition is satisfied

Summary:

Key concepts and mathematical tool

Inertia Geometry of conve functions

Inertia between convexity and strong convexity

Adaptivity for inertial scheme

Restart strategies An other approach

Conclusion

Algorithm	Convergence rate
Forward-Backward	$\mathcal{O}\left(e^{-rac{\mu}{L}k} ight)$
V-FISTA	$\mathcal{O}\left(e^{-rac{9}{20}\sqrt{rac{\mu}{L}}k} ight)$
Optimal FISTA restart	$\mathcal{O}\left(e^{-rac{1}{c}\sqrt{rac{\mu}{L}}k} ight)$
Empirical FISTA restart	$\mathcal{O}(k^{-2})$
Fercoq and Qu '19	$\mathcal{O}\left(e^{-rac{\sqrt{2}-1}{2\sqrt{e}(2-\sqrt{rac{\mu}{\mu_0}})}\sqrt{rac{\mu}{L}}k} ight)$
Alamo et al. '19	$\mathcal{O}\left(e^{-rac{1}{16}\sqrt{rac{\mu}{L}k}} ight)$
Alamo et al. '22	$\mathcal{O}\left(e^{-rac{\ln(15)}{4e}\sqrt{rac{\mu}{L}}k} ight)$
Renegar and Grimmer '22	$\mathcal{O}\left(e^{-rac{1}{2\sqrt{2}}\sqrt{rac{\mu}{L}}k} ight)$
Automatic FISTA restart	$\mathcal{O}\left(e^{-rac{1}{12}\sqrt{rac{\mu}{L}k}} ight)$

Image inpainting:

Restart strategies

$$\min_{x} F(x) := \frac{1}{2} \|Mx - y\|^{2} + \lambda \|Tx\|_{1},$$

where M is a mask operator and T is an orthogonal transformation ensuring that Tx^0 is sparse.

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexit

Adaptivity for inertial schem

Restart strategies An other approach

Conclusior

Image inpainting:

Key concepts and mathematical tools

Inertia Geometry of conve

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

What if the Lipschitz constant L is not known?

Combining backtracking and restarting: Free-FISTA (Aujol, Calatroni, Dossal, L., Rondepierre, '24)

By combining a **backtracking strategy** and a **restarting strategy**, Free-FISTA automatically estimates μ and L.

- Still efficient if *L* is not known.
- Adaptation to the local geometry of F.
- Convergence guarantees: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{\sqrt{\rho}}{12}\sqrt{\frac{\mu}{L}}k}\right)$.

Jean-François Aujol, Luca Calatroni, Charles Dossal, <u>Hippolyte Labarrière</u>, Aude Rondepierre. Parameter-Free FISTA by Adaptive Restart and Backtracking, 2024, *SIAM Journal on Optimization*.

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

FISTA is far from optimal for functions satisfying strong growth conditions!

Recall		
Algorithm	${\cal SC}_\mu$	\mathcal{G}^2_μ
FISTA	$k^{-rac{2lpha}{3}}$	$k^{-rac{2lpha}{3}}$
Optimal FISTA restart	$e^{-rac{1}{e}\sqrt{rac{\mu}{L}}k}$	$e^{-rac{1}{e}\sqrt{rac{\mu}{L}}k}$

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes

Restart strategies An other approach

Conclusion

FISTA is far from optimal for functions satisfying strong growth conditions!

Recall		
Algorithm	${\cal SC}_\mu$	\mathcal{G}^2_μ
FISTA	$k^{-rac{2lpha}{3}}$	$k^{-rac{2lpha}{3}}$
Optimal FISTA restart	$e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}$	$e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}$
V-FISTA (HB)	$e^{-\sqrt{rac{\mu}{L}}k}$	$e^{-rac{2}{3\sqrt{3}}\sqrt{rac{\mu}{L}}k}$

Behavior of the friction parameter

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schem

Restart strategies

Conclusion

 \rightarrow Friction parameter: $1 - \alpha_k$

Behavior of the friction parameter

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schem

Restart strategies

Conclusion

 \rightarrow Friction parameter: $1 - \alpha_k$

Keep piecewise constant friction to be faster!

Key concepts and mathematical tool

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

An adaptive procedure for fast methods (L., 2024)

Consider a method \mathcal{A} generating $(x_k)_{k\in\mathbb{N}}$ such that

$$F(x_k) - F^* \leq A e^{-B\sqrt{\frac{\mu}{L}}k} (F(x_0) - F^*)$$

for some A, B > 0 if $\frac{\mu}{L}$ is available. \rightarrow An adaptive scheme:

- that allows to apply \mathcal{A} when $\frac{\mu}{L}$ is not known with **theoretical guarantees**.
- that can be combined with heuristic techniques (O'Donoghue and Candès, '15) for improved performance.
- which can be extended for methods involving backtracking on L (losing the theoretical guarantees).

Hippolyte Labarrière. Adaptive techniques for linearly fast methods with unknown condition number, currently in writing.

Conclusion

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies

Conclusion

Take-away messages

· Inertia is not impacted by the non uniqueness of the minimizers.

	${\cal SC}_\mu$	\mathcal{G}^2_μ	\mathcal{H}^γ	Convexity
Best option	HB	HB	FISTA	FISTA
If the condition nu	mber is not known	\rightarrow FISTA restart	or Adaptive V-EIS	ΤΔΙ

Pending questions:

- Could the Performance Estimation Problem (PEP) approach (Drori and Teboulle,'14, Taylor, Hendrickx and Glineur,'17, Taylor and Drori,'22 ...) allow to find tighter bounds?
- Then, could it help to build faster adaptive schemes?
- Can we obtain better convergence guarantees for adaptive step-size methods (Malitsky and Mishchenko, '20,'24, Barzilai-Borwein stepsize) under growth conditions?

Conclusion

Thank you for your attention!

Publications and preprints:

- Jean-François Aujol, Charles Dossal, <u>Hippolyte Labarrière</u>, Aude Rondepierre. FISTA restart using an automatic estimation of the growth parameter, 2021, (hal-03153525v4).
- Jean-François Aujol, Luca Calatroni, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre.
 Parameter-Free FISTA by Adaptive Restart and Backtracking, 2024, SIAM Journal on Optimization.
- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball Momentum for Non-Strongly Convex Optimization, 2024, arXiv preprint arXiv:2403.06930.
- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong Convergence of FISTA Iterates under Hölderian and Quadratic Growth Conditions, 2024, arxiv:2407.17063.

My thesis manuscript (in french!):

• Hippolyte Labarrière, 2023, Étude de méthodes inertielles en optimisation et leur comportement sous conditions de géométrie.

Website:

https://hippolytelbrrr.github.io/

35/35

Key concepts and mathematical tools

Inertia

Geometry of convex functions

Inertia between convexity and strong convexity

Adaptivity for inertial schemes Restart strategies An other approach

Conclusion

References I

A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM journal on imaging sciences*, 2(1):183–202, 2009.

References II

Y. Drori and M. Teboulle.

Performance of first-order methods for smooth convex minimization: a novel approach. *Mathematical Programming*, 145(1):451–482, Jun 2014.

O. Fercoq and Z. Qu.

Adaptive restart of accelerated gradient methods under local quadratic growth condition. *IMA Journal of Numerical Analysis*, 39(4):2069–2095, 2019.

G. Garrigos, L. Rosasco, and S. Villa.

Convergence of the forward-backward algorithm: beyond the worst-case with the help of geometry. *Mathematical Programming*, pages 1–60, 2022.

J. J. Maulén and J. Peypouquet.

A speed restart scheme for a dynamics with hessian-driven damping. *Journal of Optimization Theory and Applications*, Sep 2023.

I. Necoara, Y. Nesterov, and F. Glineur.

Linear convergence of first order methods for non-strongly convex optimization. Mathematical Programming, 175(1):69–107, 2019.

Y. Nesterov.

A method of solving a convex programming problem with convergence rate $o(1/k^2)$. In Sov. Math. Dokl, volume 27, 1983.

B. O'donoghue and E. Candes.

Adaptive restart for accelerated gradient schemes. Foundations of computational mathematics, 15(3):715–732, 2015.

References III

B. Shi, S. S. Du, M. I. Jordan, and W. J. Su.

Understanding the acceleration phenomenon via high-resolution differential equations. *Mathematical Programming*, 195(1):79–148, Sep 2022.

W. Su, S. Boyd, and E. Candes.

A differential equation for modeling nesterov's accelerated gradient method: theory and insights. Advances in neural information processing systems, 27, 2014.

 \rightarrow Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent \rightarrow Gradient flow

$$x_k = x_{k-1} - s\nabla F(x_{k-1})$$

$$\iff \frac{x_k - x_{k-1}}{s} = -\nabla F(x_{k-1})$$

 \rightarrow Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent \rightarrow Gradient flow

$$x_{k} = x_{k-1} - s \nabla F(x_{k-1})$$
$$\iff \frac{x_{k} - x_{k-1}}{s} = -\nabla F(x_{k-1})$$
$$\downarrow$$
$$\dot{x}(t) + \nabla F(x(t)) = 0.$$

Nesterov's accelerated gradient \rightarrow Asymptotic vanishing damping system (Su, Boyd and Candès, '14)

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \frac{k-1}{k+\alpha - 1} (x_k - x_{k-1}) \\ \downarrow \\ \ddot{x}(t) + \frac{\alpha}{t} \dot{x}(t) + \nabla F(x(t)) = 0 \end{cases}$$

$$\forall k > 0, \begin{cases} x_k = \operatorname{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha(x_k - x_{k-1}), \\ \downarrow \\ \ddot{x}(t) + \alpha_C \dot{x}(t) + \nabla F(x(t)) = 0 \end{cases}$$

Why is this relevant?

- easier computations (derivatives),
- most of the time, convergence properties of the trajectories can be extended to the iterates of the related scheme.

Back to the discrete setting

Challenging for the following reasons:

- no more derivative,
- several possible discretization choices,
- which condition on the stepsize?

Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} \|\lambda(x(t) - x^*) + \dot{x}(t)\|^2$$

Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} \|\lambda(x(t) - x^*(t)) + \dot{x}(t)\|^2$$

where $x^*(t)$ is the projection of x(t) onto the set of minimizers of F denoted X^* .

Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

$$\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0$$

Classical Lyapunov energy for this system:

$$\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} \|\lambda(x(t) - x^*(t)) + \dot{x}(t)\|^2$$

where $x^*(t)$ is the projection of x(t) onto the set of minimizers of F denoted X^* .

 \rightarrow The differentiability of ${\mathcal E}$ depends on the regularity of $X^*!$

If X^* is sufficiently regular (e.g. polyhedral), several convergence results can be extended without the uniqueness assumption (e.g. Siegel, '19, Aujol, Dossal and Rondepierre, '23).

An ugly bound

Main results: V-FISTA

If
$$F$$
 satisfies \mathcal{G}^2_{μ} , $s = \frac{1}{L} \alpha = 1 - \omega \sqrt{\kappa}$ where $\kappa = \frac{\mu}{L}$, $\omega \in \left(0, \frac{1}{\sqrt{\kappa}}\right)$. Then, for any $k \in \mathbb{N}$:
 $F(x_k) - F^* \leq \left(1 + (\omega - \tau)^2 + (\omega - \tau)\omega\tau\sqrt{\kappa}\right) \left(1 - \tau\sqrt{\kappa} + \tau^2\kappa\right)^k (F(x_0) - F^*),$

if

$$(1 - \omega\sqrt{\kappa})\tau^3 - \omega(2 - \omega\sqrt{\kappa})\tau^2 + (\omega^2 + 2)\tau - \omega \leqslant 0$$

An other ugly bound

Main results: FISTA

If F satisfies \mathcal{G}^2_{μ} , $s = \frac{1}{L}$, $\alpha \geqslant 3 + \frac{3}{\sqrt{2}}$, then

$$\forall k \ge \frac{3\alpha}{\sqrt{\kappa}}, \ F(x_k) - F^* \leqslant \frac{9}{4}e^{-2}M_0\left(\frac{8e}{3\sqrt{\kappa}}\alpha\right)^{\frac{2\alpha}{3}}k^{-\frac{2\alpha}{3}},$$

where $M_0 = F(x_0) - F^*$ denotes the potential energy of the system at initial time.