Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Inertia in Optimization: Acceleration and Adaptivity

Hippolyte Labarrière

Joint work with Jean-François Aujol, Charles Dossal and Aude Rondepierre

Séminaire Machine Learning and Signal Processing ENS Lyon 22 October 2024

Framework and motivations

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Optimization, what is this?

\rightarrow Find a set of parameters that minimizes a quantity.

Find the route that minimizes journey time.

Find the training that leads to the best 100-meter time.

Framework and motivations

Minimization problem

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

where:

• f is a convex differentiable function having a L -Lipschitz gradient,

- \bullet h is a convex proper lower semicontinuous function,
- F has a non-empty set of minimizers X^* .

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Motivations

 $\min_{x \in \mathbb{R}^N} F(x),$

Which algorithm is the most efficient according to the **assumptions** satisfied by F and the expected accuracy?

 \rightarrow Convergence analysis of the numerical schemes:

How fast does $F(x_k) - F^*$ decreases?

Outline

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

1 [Key concepts and mathematical tools](#page-4-0) [Inertia](#page-5-0) [Geometry of convex functions](#page-20-0)

2 [Inertia between convexity and strong convexity](#page-23-0)

³ [Adaptivity for inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

A classical algorithm: the proximal gradient method (Combettes and Wajs, '05)

$$
\forall k > 0, \ x_k = \text{prox}_{sh} \left(x_{k-1} - s \nabla f(x_{k-1}) \right).
$$

Composite version of the Gradient Descent method:

$$
\forall k > 0, \ x_k = x_{k-1} - s \nabla F(x_{k-1}).
$$

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

A classical algorithm: the proximal gradient method (Combettes and Wajs, '05)

 $\forall k > 0, x_k = \text{prox}_{\leq k} (x_{k-1} - s \nabla f(x_{k-1}))$.

Composite version of the Gradient Descent method:

$$
\forall k > 0, \ x_k = x_{k-1} - s \nabla F(x_{k-1}).
$$

Convergence guarantees

If F is convex and s is sufficiently small:

$$
F(x_k) - F^* = \mathcal{O}(k^{-1})
$$

 \rightarrow Simple but slow!

A classical algorithm: the proximal gradient method

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

$\forall k > 0, x_k = \text{prox}_{sh}(x_{k-1} - s \nabla f(x_{k-1}))$.

A classical algorithm: the proximal gradient method

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

$\forall k > 0, x_k = \text{prox}_{sh}(x_{k-1} - s \nabla f(x_{k-1}))$.

A classical algorithm: the proximal gradient method

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

$\forall k > 0, x_k = \text{prox}_{sh}(x_{k-1} - s \nabla f(x_{k-1}))$.

A classical algorithm: the proximal gradient method

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

$\forall k > 0, x_k = \text{prox}_{sh}(x_{k-1} - s \nabla f(x_{k-1}))$.

A classical algorithm: the proximal gradient method

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

$\forall k > 0, x_k = \text{prox}_{sh}(x_{k-1} - s \nabla f(x_{k-1}))$.

Introducing inertia

- Key concepts and [mathematical tools](#page-4-0)
- [Inertia](#page-5-0)
- [Geometry of convex](#page-20-0) functions
- Inertia between convexity and [strong convexity](#page-23-0)
- Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

 \rightarrow Apply the same transformation to a shifted point.

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}
$$

Introducing inertia

- Key concepts and [mathematical tools](#page-4-0)
- [Inertia](#page-5-0)
- [Geometry of convex](#page-20-0) functions
- Inertia between convexity and [strong convexity](#page-23-0)
- Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

 \rightarrow Apply the same transformation to a shifted point.

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}
$$

Introducing inertia

- Key concepts and [mathematical tools](#page-4-0)
- [Inertia](#page-5-0)
- [Geometry of convex](#page-20-0) functions
- Inertia between convexity and [strong convexity](#page-23-0)
- Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

 \rightarrow Apply the same transformation to a shifted point.

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}
$$

Introducing inertia

- Key concepts and [mathematical tools](#page-4-0)
- [Inertia](#page-5-0)
- [Geometry of convex](#page-20-0) functions
- Inertia between convexity and [strong convexity](#page-23-0)
- Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

 \rightarrow Apply the same transformation to a shifted point.

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}
$$

Introducing inertia

- Key concepts and [mathematical tools](#page-4-0)
- [Inertia](#page-5-0)
- [Geometry of convex](#page-20-0) functions
- Inertia between convexity and [strong convexity](#page-23-0)
- Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

 \rightarrow Apply the same transformation to a shifted point.

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}
$$

Introducing inertia

- Key concepts and [mathematical tools](#page-4-0)
- [Inertia](#page-5-0)
- [Geometry of convex](#page-20-0) functions
- Inertia between convexity and [strong convexity](#page-23-0)
- Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

 \rightarrow Apply the same transformation to a shifted point.

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}
$$

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Introducing inertia

 \rightarrow Apply the same transformation to a shifted point.

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}
$$

Rising question

How to chose α_k ?

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0)

[An other approach](#page-49-0)

Introducing inertia

 \rightarrow Apply the same transformation to a shifted point.

$$
\forall k > 0, \begin{cases} x_k = \textsf{prox}_{sh} \left(y_{k-1} - s \nabla f(y_{k-1}) \right), \\ y_k = x_k + \alpha_k (x_k - x_{k-1}), \end{cases}
$$

Rising question

How to chose α_k ?

- Heavy-Ball schemes (Polyak,'64, Nesterov,'03, ...): constant friction $\rightarrow \alpha_k = \alpha$.
- FISTA (Beck and Teboulle,'09, Nesterov,'83): vanishing friction $\rightarrow \alpha_k = \frac{k-1}{k+\alpha-1}$.

Geometry of convex functions

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Strong convexity (\mathcal{SC}_μ)

 F is μ -strongly convex if for all $x\in \mathbb{R}^N$, $g: x\mapsto F(x)-\frac{\mu}{2}\|x\|^2$ is convex.

Convergence rate of $F(x_k) - F^*$

Geometry of convex functions

Classical geometry assumptions

- Key concepts and [mathematical tools](#page-4-0)
- [Inertia](#page-5-0)
- [Geometry of convex](#page-20-0) functions
- Inertia between convexity and [strong convexity](#page-23-0)
- Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)
-

• Quadratic growth condition (\mathcal{G}_{μ}^2) :

 F has a quadratic growth around its set of minimizers if

$$
\exists \mu > 0, \ \forall x \in \mathbb{R}^N, \ \frac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*.
$$

Practical example: LASSO problem:

$$
F(x) = \frac{1}{2} ||Ax - y||^2 + \lambda ||x||_1.
$$

Geometry of convex functions

Classical geometry assumptions

• Quadratic growth condition (\mathcal{G}_{μ}^2) :

 F has a quadratic growth around its set of minimizers if

$$
\exists \mu > 0, \ \forall x \in \mathbb{R}^N, \ \frac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*.
$$

Practical example: LASSO problem:

$$
F(x) = \frac{1}{2} ||Ax - y||^2 + \lambda ||x||_1.
$$

• Hölderian error bound (\mathcal{H}^{γ}) :

F has a γ -Hölderian growth around its set of minimizers (with $\gamma > 2$) if

 $\exists K > 0, \ \forall x \in \mathbb{R}^N, \ K d(x, X^*)^{\gamma} \leqslant F(x) - F^*.$

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Outline

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

1 [Key concepts and mathematical tools](#page-4-0) [Inertia](#page-5-0) [Geometry of convex functions](#page-20-0)

² [Inertia between convexity and strong convexity](#page-23-0)

³ [Adaptivity for inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Framework

 $\min\limits_{x\in\mathbb{R}^N}F(x)$ for F satisfying some geometry assumption.

What did we know?

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

$\min\limits_{x\in\mathbb{R}^N}F(x)$ for F satisfying some geometry assumption.

What did we know?

Framework

If F has a unique minimizer!!

[∗] in the continuous setting (Begout et al., '15).

Framework

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

 $\min\limits_{x\in\mathbb{R}^N}F(x)$ for F satisfying some geometry assumption.

What did we know?

If F has a unique minimizer!!

Is it really necessary?

[∗] in the continuous setting (Begout et al., '15).

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0)

[An other approach](#page-49-0)

How to avoid the uniqueness assumption?

Our strategy

Consider V-FISTA (Beck,'17, Nesterov,'03):

$$
\forall k > 0, \begin{cases} x_k = \textsf{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}
$$

where $F=f+h$ is such that $\frac{\mu}{2}d(x,X^*)^2\leqslant F(x)-F^*$ for any $x\in\mathbb{R}^N$.

Consider V-FISTA (Beck,'17, Nesterov,'03):

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Our strategy

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

How to avoid the uniqueness assumption?

$\forall k > 0,$ $\int x_k = \textsf{prox}_{sh}(y_{k-1} - s \nabla f(y_{k-1}))$ $y_k = x_k + \alpha (x_k - x_{k-1})$

where $F=f+h$ is such that $\frac{\mu}{2}d(x,X^*)^2\leqslant F(x)-F^*$ for any $x\in\mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$
\mathcal{E}_k = s(F(x_k) - F^*) + \frac{1}{2} ||\lambda(x_k - x^*) + x_k - x_{k-1}||^2
$$

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

How to avoid the uniqueness assumption?

Our strategy

Consider V-FISTA (Beck,'17, Nesterov,'03):

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}
$$

where $F=f+h$ is such that $\frac{\mu}{2}d(x,X^*)^2\leqslant F(x)-F^*$ for any $x\in\mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$
\mathcal{E}_k = s(F(x_k) - F^*) + \frac{1}{2} ||\lambda(x_k - x_k^*) + x_k - x_{k-1}||^2
$$

where x_k^* is the projection of x_k onto the set of minimizers of F denoted X^* .

How to avoid the uniqueness assumption?

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

[inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Our strategy

Consider V-FISTA (Beck,'17, Nesterov,'03):

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})) \\ y_k = x_k + \alpha(x_k - x_{k-1}) \end{cases}
$$

where $F = f + h$ is such that $\frac{\mu}{2} d(x, X^*)^2 \leqslant F(x) - F^*$ for any $x \in \mathbb{R}^N$. Classical discrete Lyapunov energy for this system:

$$
\mathcal{E}_k = s(F(x_k) - F^*) + \frac{1}{2} ||\lambda(x_k - x_k^*) + x_k - x_{k-1}||^2
$$

where x_k^* is the projection of x_k onto the set of minimizers of F denoted X^* .

 \rightarrow Trickier calculations \rightarrow No assumption on X^* required!

Main results: V-FISTA

Key concepts and [mathematical tools](#page-4-0) [Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions Inertia between convexity and [strong convexity](#page-23-0) Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh}(y_{k-1} - s \nabla f(y_{k-1})) \\ y_k = x_k + \alpha (x_k - x_{k-1}) \end{cases}
$$

Theorem (Aujol, Dossal, L., Rondepierre,'24): If F satisfies \mathcal{G}_{μ}^2 , $s=\frac{1}{L}$ and $\alpha=1-\frac{5}{3\sqrt{3}}\sqrt{\frac{\mu}{L}}$:

$$
F(x_k) - F^* = \mathcal{O}\left(e^{-\frac{2}{3\sqrt{3}}\sqrt{\frac{\mu}{L}}k}\right)
$$

- Uniqueness of the minimizer is not required.
- Theoretical guarantees for non optimal values of α .
- Better worst-case bound than any FISTA restart scheme: $\mathcal{O}\left(e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}\right)$.
- α depends on $\frac{\mu}{L}$!

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Main results: FISTA for \mathcal{G}^2_μ

$$
\forall k>0, \left\{ \begin{aligned} x_k &= \text{prox}_{sh}(y_{k-1} - s \nabla f(y_{k-1})) \\ y_k &= x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1}) \end{aligned} \right.
$$

Theorem (Aujol, Dossal, L., Rondepierre,'24): If F satisfies \mathcal{G}_{μ}^2 , $s=\frac{1}{L}$ and $\alpha\geqslant3+\frac{3}{\sqrt{2}}$:

$$
F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\alpha}{3}}\right)
$$

- Uniqueness of the minimizer is not required.
- Finite time bound available.
- \bullet α can be parametrized according to the expected accuracy to get improved performance.

Main results: FISTA for \mathcal{H}^{γ}

Key concepts and [mathematical tools](#page-4-0) [Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions Inertia between convexity and [strong convexity](#page-23-0) Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

$$
\forall k>0, \left\{ \begin{aligned} x_k &= \text{prox}_{sh}(y_{k-1} - s \nabla f(y_{k-1})) \\ y_k &= x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1}) \end{aligned} \right.
$$

Theorem (Aujol, Dossal, L., Rondepierre, 24): If F is coercive and there exists $\varepsilon > 0$, $K > 0$ and $\gamma>2$ such that F satisfies the following inequality for any minimizer x^*

$$
\forall x \in B(x^*, \varepsilon), \ Kd(x, X^*)^{\gamma} \leq F(x) - F^*,
$$

then for $\alpha > 5 + \frac{8}{\gamma-2}$: $F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\gamma}{\gamma-2}}\right)$ and $\|x_k - x_{k-1}\| = \mathcal{O}\left(k^{-\frac{\gamma}{\gamma-2}}\right)$

Main results: FISTA for \mathcal{H}^{γ}

$$
\forall k>0, \left\{ \begin{aligned} x_k &= \text{prox}_{sh}(y_{k-1} - s \nabla f(y_{k-1})) \\ y_k &= x_k + \frac{k-1}{k+\alpha-1}(x_k - x_{k-1}) \end{aligned} \right.
$$

Theorem (Aujol, Dossal, L., Rondepierre, 24): If F is coercive and there exists $\varepsilon > 0$, $K > 0$ and $\gamma>2$ such that F satisfies the following inequality for any minimizer x^*

$$
\forall x \in B(x^*, \varepsilon), \ Kd(x, X^*)^{\gamma} \leq F(x) - F^*,
$$

then for $\alpha > 5 + \frac{8}{\gamma-2}$:

Key concepts and [mathematical tools](#page-4-0) [Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions Inertia between convexity and [strong convexity](#page-23-0) Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

$$
F(x_k) - F^* = \mathcal{O}\left(k^{-\frac{2\gamma}{\gamma-2}}\right) \text{ and } \|x_k - x_{k-1}\| = \mathcal{O}\left(k^{-\frac{\gamma}{\gamma-2}}\right)
$$

Corollary: Under the same assumptions, for any $\alpha > 5$, the sequence $(x_k)_{k \in \mathbb{N}}$ converges strongly to a minimizer of F .

What do we know now?

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Take-away message

Inertia is not impacted by the non uniqueness of the minimizers.

Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball Momentum for Non-Strongly Convex Optimization, 2024, arXiv preprint arXiv:2403.06930.

18/35

Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong Convergence of FISTA Iterates under Hölderian and Quadratic Growth Conditions, 2024, arxiv:2407.17063.

Outline

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

1 [Key concepts and mathematical tools](#page-4-0) [Inertia](#page-5-0) [Geometry of convex functions](#page-20-0)

2 [Inertia between convexity and strong convexity](#page-23-0)

³ [Adaptivity for inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

Framework

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

$\min_{x \in \mathbb{R}^N} F(x),$

where F satisfies a growth condition $(\mathcal{SC}_{\mu}$ or $\mathcal{G}_{\mu}^2)$ and the growth parameter μ is not known.

First-order methods

In this setting:

- proximal gradient method: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{\mu}{L}k}\right)$,
- Heavy-Ball methods: $F(x_k) F^* = \mathcal{O}\left(e^{-K\sqrt{\frac{\mu}{L}}k}\right)$ if μ is known,
- FISTA (Beck and Teboulle, 09, Nesterov, 83):

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh}(y_{k-1} - s\nabla f(y_{k-1})), \\ y_k = x_k + \dfrac{k-1}{k+2}(x_k - x_{k-1}) \\ \rightarrow F(x_k) - F^* = \mathcal{O}\left(k^{-2}\right) \end{cases}
$$

Key concepts and [mathematical tools](#page-4-0)

- [Inertia](#page-5-0)
- [Geometry of convex](#page-20-0) functions
- Inertia between convexity and [strong convexity](#page-23-0)
- Adaptivity for [inertial schemes](#page-36-0)
- [Restart strategies](#page-37-0) [An other approach](#page-49-0)
-

Restarting FISTA, why?

- to take advantage of inertia,
- to avoid oscillations.

Figure: Projection of the trajectory of the iterates of FISTA (left) and FISTA restart (right) for a least-squares problem $(N = 20)$.

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Restarting FISTA, how?

Algorithm 1 : FISTA restart

Require: $x_0 \in \mathbb{R}^N$, $y_0 = x_0$, $k = 0$, $i = 0$. repeat

 $k = k + 1, i = i + 1$ $x_k = \text{prox}_{ab}(y_{k-1} - s\nabla f(y_{k-1}))$ if Restart condition is $True$ then $i = 1$

end if $y_k = x_k + \frac{i-1}{i+2}(x_k - x_{k-1})$ until Exit condition is $True$

 \rightarrow Cutting inertia is equivalent to restarting the algorithm from the last iterate.

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Empiric FISTA restart (O'Donoghue and Candès, '15, Beck and Teboulle, '09)

Restart under some exit condition

• on F :

• on ∇F :

$$
F(x_k) > F(x_{k-1}),
$$

 $\langle \nabla F(y_k), x_k - x_{k-1} \rangle > 0.$

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Empiric FISTA restart (O'Donoghue and Candès, '15, Beck and Teboulle, '09)

Restart under some exit condition

 \bullet on F .

 $F(x_k) > F(x_{k-1}),$

 \bullet on ∇F .

$$
\langle \nabla F(y_k), x_k - x_{k-1} \rangle > 0.
$$

Fixed FISTA restart (Nesterov, '13, O'Donoghue and Candès, '15...)

Restart every k^* iterations where k^* is defined according to the growth parameter μ . If $k^* = \left\lfloor 2e \sqrt{\frac{L}{\mu}} \right\rfloor$: $√^μ$

$$
F(x_k) - F^* = \mathcal{O}\left(e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}\right).
$$

Generalization: Scheduled restarts, Roulet and D'Aspremont '17.

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

[inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Adaptive FISTA restart

Restart according to the geometry of F and previous iterations.

- Fercoq and Qu, '19: $F(x_k) F^* = \circ$ exp $\sqrt{ }$ $-\frac{\sqrt{2}-1}{2\sqrt{e}\left(2-\sqrt{e^2-1}\right)}$ $\frac{\sqrt{2}-1}{2\sqrt{e}\left(2-\sqrt{\frac{\mu}{\mu_0}}\right)}\sqrt{\frac{\mu}{L}}k$ λ $\overline{}$ λ $\Bigg\}$.
- Alamo et al., '19: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{1}{16}\sqrt{\frac{\mu}{L}}k}\right)$.
- Alamo et al., '22: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{\ln(15)}{4e}\sqrt{\frac{\mu}{L}}k}\right)$, where $\frac{\ln(15)}{4e} \approx \frac{1}{4}$.
- Renegar and Grimmer, '22: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{1}{2\sqrt{2}}\sqrt{\frac{\mu}{L}}k}\right)$.

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Introduction of an automatic restart scheme (Aujol, Dossal, L., Rondepierre,'21)

Features: a restart condition that

- does not require to know the growth parameter μ ,
- ensures a fast convergence of the method: $F(x_k) F^* = \mathcal{O}(e^{-\frac{1}{12}\sqrt{\frac{\mu}{L}}k})$,
- is not computationnaly expensive,
- is easy to implement.

Strategy

- to estimate μ at each restart,
- to adapt the number of iterations of the following restart according to this estimation.

Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. FISTA restart using an automatic estimation of the growth parameter, 2021, 〈hal-03153525v4〉.

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Algorithm 2 : Automatic FISTA restart

Require: $r_0 \in \mathbb{R}^N$, $j = 1$, $C = 6.38$. $n_0 = |2C|$ $r_1 = \text{FISTA}(r_0, n_0)$ $n_1 = |2C|$ repeat $i = i + 1$ $r_i = \text{FISTA}(r_{i-1}, n_{i-1})$ $\tilde{\mu}_j = \min_{\substack{i \in \mathbb{N}^* \ i < j}}$ 4L $(n_{i-1}+1)^2$ $F(r_{i-1}) - F(r_j)$ $F(r_i) - F(r_j)$ Estimation of the parameter μ . if $n_{j-1} \leqslant C \sqrt{\frac{L}{\tilde \mu_j}}$ then $n_j = 2n_{j-1}$ Update of the number of iterations per restart. end if until exit condition is satisfied

Summary:

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Image inpainting:

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

$$
\min_x F(x) := \frac{1}{2} ||Mx - y||^2 + \lambda ||Tx||_1,
$$

where M is a mask operator and T is an orthogonal transformation ensuring that Tx^0 is sparse.

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

Image inpainting:

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0) [Geometry of convex](#page-20-0)

functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

What if the Lipschitz constant L is not known?

Combining backtracking and restarting: Free-FISTA (Aujol, Calatroni, Dossal, L., Rondepierre, '24)

By combining a **backtracking strategy** and a restarting strategy, Free-FISTA automatically estimates μ and L .

- Still efficient if L is not known.
- Adaptation to the local geometry of F .
- Convergence guarantees: $F(x_k) F^* = \mathcal{O}\left(e^{-\frac{\sqrt{\rho}}{12}\sqrt{\frac{\mu}{L}}k}\right)$.

Jean-François Aujol, Luca Calatroni, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Parameter-Free FISTA by Adaptive Restart and Backtracking, 2024, SIAM Journal on Optimization.

Recall

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

FISTA is far from optimal for functions satisfying strong growth conditions!

Recall

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

FISTA is far from optimal for functions satisfying strong growth conditions!

Algorithm SC_{μ} $\frac{2}{\mu}$ **FISTA** $k^{-\frac{2\alpha}{3}}$ $\frac{3}{3}$ k $-\frac{2\alpha}{3}$ Optimal FISTA restart $-\frac{1}{e}\sqrt{\frac{\mu}{L}}k$ $e^{-\frac{1}{e}\sqrt{\frac{\mu}{L}}k}$ V-FISTA (HB) $-\sqrt{\frac{\mu}{L}}k$ $e^{-\frac{2}{3\sqrt{3}}\sqrt{\frac{\mu}{L}}k}$

Behavior of the friction parameter

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

 \rightarrow Friction parameter: $1 - \alpha_k$

Behavior of the friction parameter

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0)

[Restart strategies](#page-37-0) [An other approach](#page-49-0)

 \rightarrow Friction parameter: $1 - \alpha_k$

Keep piecewise constant friction to be faster!

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0)

[An other approach](#page-49-0)

An adaptive procedure for fast methods (L., 2024)

Consider a method A generating $(x_k)_{k\in\mathbb{N}}$ such that

$$
F(x_k) - F^* \leqslant A e^{-B\sqrt{\frac{\mu}{L}}k} \left(F(x_0) - F^* \right)
$$

for some $A, B > 0$ if $\frac{\mu}{L}$ is available. \rightarrow An adaptive scheme:

- that allows to apply ${\mathcal A}$ when $\frac{\mu}{L}$ is not known with theoretical guarantees.
- that can be combined with heuristic techniques (O'Donoghue and Candès, '15) for improved performance.
- which can be extended for methods involving backtracking on L (losing the theoretical guarantees).

Hippolyte Labarrière. Adaptive techniques for linearly fast methods with unknown condition number, currently in writing.

Conclusion

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

[Conclusion](#page-54-0)

Take-away messages

· Inertia is not impacted by the non uniqueness of the minimizers.

Pending questions:

- Could the Performance Estimation Problem (PEP) approach (Drori and Teboulle,'14, Taylor, Hendrickx and Glineur,'17, Taylor and Drori,'22 ...) allow to find tighter bounds?
- Then, could it help to build faster adaptive schemes?
- Can we obtain better convergence guarantees for adaptive step-size methods (Malitsky and Mishchenko,'20,'24, Barzilai-Borwein stepsize) under growth conditions?

Conclusion

Thank you for your attention!

Publications and preprints:

- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. FISTA restart using an automatic estimation of the growth parameter, 2021, 〈hal-03153525v4〉.
- Jean-François Aujol, Luca Calatroni, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Parameter-Free FISTA by Adaptive Restart and Backtracking, 2024, SIAM Journal on Optimization.
- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Heavy Ball Momentum for Non-Strongly Convex Optimization, 2024, arXiv preprint arXiv:2403.06930.
- Jean-François Aujol, Charles Dossal, Hippolyte Labarrière, Aude Rondepierre. Strong Convergence of FISTA Iterates under Hölderian and Quadratic Growth Conditions, 2024, arxiv:2407.17063.

My thesis manuscript (in french!):

• Hippolyte Labarrière, 2023, Étude de méthodes inertielles en optimisation et leur comportement sous conditions de géométrie.

Website:

<https://hippolytelbrrr.github.io/>

Key concepts and [mathematical tools](#page-4-0)

[Inertia](#page-5-0)

[Geometry of convex](#page-20-0) functions

Inertia between convexity and [strong convexity](#page-23-0)

Adaptivity for [inertial schemes](#page-36-0) [Restart strategies](#page-37-0) [An other approach](#page-49-0)

[Conclusion](#page-54-0)

References I

T. Alamo, D. Limon, and P. Krupa.

Restart FISTA with global linear convergence. pages 1969–1974, 2019.

H. Attouch, Z. Chbani, J. Fadili, and H. Riahi.

First-order optimization algorithms via inertial systems with hessian driven damping. Mathematical Programming, pages 1–43, 2020.

H. Attouch, J. Peypouquet, and P. Redont.

Fast convex optimization via inertial dynamics with hessian driven damping. Journal of Differential Equations, 261(10):5734–5783, 2016.

J.-F. Aujol, C. Dossal, and A. Rondepierre.

Convergence rates of the heavy-ball method under the lojasiewicz property. Mathematical Programming, pages 1–60, 2022.

J.-F. Aujol, C. Dossal, and A. Rondepierre.

Fista is an automatic geometrically optimized algorithm for strongly convex functions. Mathematical Programming, Apr 2023.

A. Beck.

First-order methods in optimization. SIAM, 2017.

A. Beck and M. Teboulle.

A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

References II

Y. Drori and M. Teboulle.

Performance of first-order methods for smooth convex minimization: a novel approach. Mathematical Programming, 145(1):451–482, Jun 2014.

F

O. Fercoq and Z. Qu.

Adaptive restart of accelerated gradient methods under local quadratic growth condition. IMA Journal of Numerical Analysis, 39(4):2069–2095, 2019.

G. Garrigos, L. Rosasco, and S. Villa.

Convergence of the forward-backward algorithm: beyond the worst-case with the help of geometry. Mathematical Programming, pages 1–60, 2022.

F

J. J. Maul´en and J. Peypouquet.

A speed restart scheme for a dynamics with hessian-driven damping. Journal of Optimization Theory and Applications, Sep 2023.

I. Necoara, Y. Nesterov, and F. Glineur.

Linear convergence of first order methods for non-strongly convex optimization. Mathematical Programming, 175(1):69–107, 2019.

Y. Nesterov.

A method of solving a convex programming problem with convergence rate $o(1/k^2)$. In Sov. Math. Dokl, volume 27, 1983.

B. O'donoghue and E. Candes.

Adaptive restart for accelerated gradient schemes. Foundations of computational mathematics, 15(3):715–732, 2015.

References III

B. Shi, S. S. Du, M. I. Jordan, and W. J. Su.

Understanding the acceleration phenomenon via high-resolution differential equations. Mathematical Programming, 195(1):79–148, Sep 2022.

W. Su, S. Boyd, and E. Candes.

A differential equation for modeling nesterov's accelerated gradient method: theory and insights. Advances in neural information processing systems, 27, 2014.

 \rightarrow Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent→ Gradient flow

$$
x_k = x_{k-1} - s\nabla F(x_{k-1})
$$

$$
\iff \frac{x_k - x_{k-1}}{s} = -\nabla F(x_{k-1})
$$

 \rightarrow Key tool in convergence analysis: Link numerical schemes to dynamical systems.

Gradient descent→ Gradient flow

$$
x_k = x_{k-1} - s\nabla F(x_{k-1})
$$

$$
\iff \frac{x_k - x_{k-1}}{s} = -\nabla F(x_{k-1})
$$

$$
\downarrow
$$

$$
\dot{x}(t) + \nabla F(x(t)) = 0.
$$

Nesterov's accelerated gradient→Asymptotic vanishing damping system (Su, Boyd and Candès, '14)

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} (y_{k-1} - s \nabla f(y_{k-1})), \\ y_k = x_k + \frac{k-1}{k+\alpha-1} (x_k - x_{k-1}) \\ \downarrow \end{cases}
$$

$$
\ddot{x}(t) + \frac{\alpha}{t} \dot{x}(t) + \nabla F(x(t)) = 0
$$

Heavy-Ball schemes→ Heavy-Ball Friction system

$$
\forall k > 0, \begin{cases} x_k = \text{prox}_{sh} (y_{k-1} - s \nabla f(y_{k-1})) \,, \\ y_k = x_k + \alpha (x_k - x_{k-1}), \end{cases}
$$

$$
\downarrow
$$

$$
\ddot{x}(t) + \alpha_C \dot{x}(t) + \nabla F(x(t)) = 0
$$

Why is this relevant?

- easier computations (derivatives),
- most of the time, convergence properties of the trajectories can be extended to the iterates of the related scheme.

Back to the discrete setting

Challenging for the following reasons:

- no more derivative,
- several possible discretization choices,
- which condition on the stepsize?

Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

$$
\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0
$$

Classical Lyapunov energy for this system:

$$
\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} ||\lambda(x(t) - x^*) + \dot{x}(t)||^2
$$

Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

$$
\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0
$$

Classical Lyapunov energy for this system:

$$
\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} ||\lambda(x(t) - x^*(t)) + \dot{x}(t)||^2
$$

where $x^*(t)$ is the projection of $x(t)$ onto the set of minimizers of F denoted $X^*.$

Inertia without uniqueness of the minimizers

The continuous setting

Consider the Heavy-Ball friction system:

$$
\ddot{x}(t) + \alpha \dot{x}(t) + \nabla F(x(t)) = 0
$$

Classical Lyapunov energy for this system:

$$
\mathcal{E}(t) = F(x(t)) - F^* + \frac{1}{2} ||\lambda(x(t) - x^*(t)) + \dot{x}(t)||^2
$$

where $x^*(t)$ is the projection of $x(t)$ onto the set of minimizers of F denoted $X^*.$

 \rightarrow The differentiability of ${\cal E}$ depends on the regularity of $X^*!$

If X^* is sufficiently regular (e.g. polyhedral), several convergence results can be extended without the uniqueness assumption (e.g. Siegel, '19, Aujol, Dossal and Rondepierre, '23).

An ugly bound

Main results: V-FISTA

If *F* satisfies
$$
G_{\mu}^2
$$
, $s = \frac{1}{L} \alpha = 1 - \omega \sqrt{\kappa}$ where $\kappa = \frac{\mu}{L}$, $\omega \in \left(0, \frac{1}{\sqrt{\kappa}}\right)$. Then, for any $k \in \mathbb{N}$:
\n
$$
F(x_k) - F^* \leq (1 + (\omega - \tau)^2 + (\omega - \tau)\omega \tau \sqrt{\kappa}) (1 - \tau \sqrt{\kappa} + \tau^2 \kappa)^k (F(x_0) - F^*),
$$

if

$$
(1 - \omega\sqrt{\kappa})\,\tau^3 - \omega\left(2 - \omega\sqrt{\kappa}\right)\tau^2 + (\omega^2 + 2)\tau - \omega \leq 0.
$$

An other ugly bound

Main results: FISTA

If F satisfies \mathcal{G}_{μ}^2 , $s=\frac{1}{L}$, $\alpha\geqslant3+\frac{3}{\sqrt{2}}$, then

$$
\forall k \geqslant \frac{3\alpha}{\sqrt{\kappa}}, \ F(x_k) - F^* \leqslant \frac{9}{4} e^{-2} M_0 \left(\frac{8e}{3\sqrt{\kappa}} \alpha \right)^{\frac{2\alpha}{3}} k^{-\frac{2\alpha}{3}},
$$

where $M_0 = F(x_0) - F^*$ denotes the potential energy of the system at initial time.