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Context

”Old-school” optimization: For some convex f (and potentially more than convex):

min
x∈H

f(x)

What can we get? Methods that provide
convergence to a minimum (which is global),
explicit convergence rates,
fancy techniques for acceleration (inertia, preconditioning, Newton).
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Context

Optimization nowadays: Training overparameterized models:

min
w∈W

L(w)

→ L is non convex!
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Optimization nowadays: Training overparameterized models:

min
w∈W

L(w)

→ L is non convex!

What can be ensured in general?
convergence to . . . a critical point?
convergence rates?
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Optimization nowadays: Training overparameterized models:

min
w∈W

L(w)

→ L is non convex!

Some functions/networks are well-behaved1!

1 [Oymak ’19, Liu et al. ’22, Chatterjee ’22, Buskulic et al. ’24]
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Context

Optimization nowadays: Training overparameterized models:

min
w∈W

L(w)

→ L is non convex!

Some functions/networks are well-behaved1!

Simple methods converge to a (potentially global) minimizer,
Linear convergence(!)

→ What is hidden?

1 [Oymak ’19, Liu et al. ’22, Chatterjee ’22, Buskulic et al. ’24]
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Preliminaries

Gradient Flow (GF): For some initialization point x0 ∈ Rd:

∀t ≥ 0, ẋ(t) + ∇f(x(t)) = 0, x(0) = x0

Discretization give Gradient Descent:

∀k ∈ N, xk+1 = xk − s∇f(xk), s > 0

Always brings you down:

d

dt
f(x(t)) = ⟨ẋ(t), ∇f(x(t))⟩ = −∥∇f(x(t))∥2 ≤ 0
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f(x(t)) = ⟨ẋ(t), ∇f(x(t))⟩ = −∥∇f(x(t))∥2 ≤ 0

4



Geometric conditions

(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz ’63, Polyak ’63]:

∃µ > 0, ∀x ∈ Rd, 2µ(f(x) − f∗) ≤ ∥∇f(x)∥2
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Geometric conditions

(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz ’63, Polyak ’63]:

∃µ > 0, ∀x ∈ Rd, 2µ(f(x) − f∗) ≤ ∥∇f(x)∥2

Getting linear rates without convexity:

∀t ≥ 0, ẋ(t) + ∇f(x(t)) = 0, x(0) = x0

Supposing PL holds:

d

dt

(
f(x(t)) − f∗)

= −∥∇f(x(t))∥2 ≤ −2µ
(
f(x(t)) − f∗)

Therefore,
f(x(t)) − f∗ ≤ exp(−2µt)(f(x0) − f∗)
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Geometric conditions

(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz ’63, Polyak ’63]:

∃µ > 0, ∀x ∈ Rd, 2µ(f(x) − f∗) ≤ ∥∇f(x)∥2

Getting linear rates without convexity:

f(x(t)) − f∗ ≤ exp(−2µt)(f(x0) − f∗)

Are we already done?

No. PL is a restrictive assumption to hold globally:

→ No critical points: ∇f only cancels at the global minimizer!
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Geometric conditions

(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz ’63, Polyak ’63]:

∃µ > 0, ∀x ∈ Rd, 2µ(f(x) − f∗) ≤ ∥∇f(x)∥2

Where does x(t) go? Simple calculations show that under PL,

∀t ≥ 0, ∥x(t) − x0∥ ≤
∫ t

0
∥ẋ(s)∥ds ≤

√
2

(
f(x0) − f∗)

µ

The trajectory is trapped in a ball!
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Semilocal convergence
It is sufficient to have PL on the corresponding ball → Semilocal PL

Theorem [Oymak et al. ’19, Kachaiev et al. ’26]: Suppose that for some
µ > 0:

∀x ∈ B

x0,

√
2

(
f(x0) − f∗)

µ

 , 2µ(f(x) − f∗) ≤ ∥∇f(x)∥2

Then, the solution x(t) of GF starting from x0 is such that
it stays in the ball,
it converges to a global minimizer x∗ (!) and:

f(x(t)) − f∗ ≤ exp(−2µt)(f(x0) − f∗)
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Semilocal convergence

Why Semilocal? PL is required to hold on the ball

B

x0,

√
2

(
f(x0) − f∗)

µ



Classical conditions in optimization:
Global → holds everywhere
Local → holds around minimizers

Here, PL holds around the initialization!
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Semilocal convergence

How to enforce this assumption? Take

f : x 7→ 1
2∥H(x) − y∗∥2, H : RD → Rd, y∗ ∈ Rd

Theorem [Kachaiev et al. ’26, Chatterjee ’22]: If for some r > 0, there
exists σr > 0 such that

∀x ∈ B(x0, r), σmin(JH(x)) ≥ σr and y∗ ∈ B(H(x0), rσr).

Then,
f satisfies semilocal PL for µ = σ2

r .
GF converges to x∗ s.t. H(x∗) = y∗.
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A simple example

A simple neural network: Let x = (a, w) with a ∈ R and w ∈ Rd.

f : x 7→ 1
2∥H(x) − y∗∥2, H : x 7→ aw, y∗ ∈ Rd
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A simple neural network: Let x = (a, w) with a ∈ R and w ∈ Rd.

f : x 7→ 1
2∥H(x) − y∗∥2, H : x 7→ aw, y∗ ∈ Rd

When does GF converge?

Let w0 = 0d. Find a0 ∈ R, r > 0 and σr > 0 such that:

∀(a, w) ∈ B((a0, w0), r),
√

a2 + ∥w∥2 ≥ σr

y∗ ∈ B(H(a0, w0)︸ ︷︷ ︸
=0d

, rσr)
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A simple example

A simple neural network: Let x = (a, w) with a ∈ R and w ∈ Rd.

f : x 7→ 1
2∥H(x) − y∗∥2, H : x 7→ aw, y∗ ∈ Rd

When does GF converge?

Let w0 = 0d. Fix r = |a0|
2 and σr = |a0| − r = |a0|

2 . For |a0| sufficiently large:

∀(a, w) ∈ B((a0, w0), r),
√

a2 + ∥w∥2 ≥ |a| ≥ |a0| − r = σr > 0

rσr = a2
0

4 ≥ ∥y∗∥

Linear convergence!
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Discussion

Is non convex optimization solved?
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Is non convex optimization solved?

No! This approach is restrictive in various ways:
Optimization: artificially increasing µ (or σr) =⇒ increasing the Lipschitz
constant of ∇f !

→ Critical issue for discrete algorithms!
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Discussion

Is non convex optimization solved?

No! This approach is restrictive in various ways:
Optimization: artificially increasing µ (or σr) =⇒ increasing the Lipschitz
constant of ∇f !

→ Critical issue for discrete algorithms!
Learning: rescaling f through initialization =⇒ entering lazy training
regime [Chizat et al. ’19]

→ Behaves as a linearized model!
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Conclusion

Takeaways:
Non convex optimization on
overparameterized models can
be fine!
Everything happens at
initialization

Limitations:
Impractical for discrete
algorithms
Everything happens at
initialization!

Open questions:
→ Are there practical cases where Semilocal PL holds?
→ Could inertial techniques help in this context? [Buskulic et al. ’25]
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Thank you for your attention!

Questions?

Related paper:

Kachaiev, O., Labarrière, H., Molinari, C., Villa, S., On the Semilocal Convergence of
Overparameterized Models, in preparation.

My Website:

https://hippolytelbrrr.github.io/pages/index_eng.html
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Appendix

Where does x(t) go?

∥x(t) − x0∥ ≤
∫ t

0
∥ẋ(s)∥ds =

∫ t

0
∥∇f(x(s))∥ds ≤

∫ t

0

∥∇f(x(s))∥2√
2µ(f(x(s)) − f∗)

ds

Since d
dt

√
f(x(t)) − f∗ = 1

2
√

f(x(t))−f∗

d

dt
(f(x(t)) − f∗)︸ ︷︷ ︸
=−∥∇f(x(t))∥2

,

∥x(t) − x0∥ ≤
√

2
µ

[√
f(x0) − f∗ −

√
f(x(t)) − f∗

]
≤

√
2

(
f(x0) − f∗)

µ

15



Appendix

Where does x(t) go?

∥x(t) − x0∥ ≤
∫ t

0
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√

2
µ

[√
f(x0) − f∗ −

√
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√
2
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µ

The trajectory always stays in a ball around x0!
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