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Context

”0Old-school” optimization: For some convex f (and potentially more than convex):

min f(z)

What can we get? Methods that provide
m convergence to a minimum (which is global),
m explicit convergence rates,

m fancy techniques for acceleration (inertia, preconditioning, Newton).
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m convergence to ...a critical point?

m convergence rates?
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Context

Optimization nowadays: Training overparameterized models:

in L
iy L)

— L is non convex!

Some functions/networks are well-behaved'!

m Simple methods converge to a (potentially global) minimizer,

m Linear convergence(!)

— What is hidden?

1 [Oymak '19, Liu et al. '22, Chatterjee '22, Buskulic et al. '24]
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Gradient Flow (GF): For some initialization point o € R%:

Vi >0, x(t)+Vf(z(t) =0, =z(0)=x

m Discretization give Gradient Descent:
VkeN, zpi1 =xr—sVf(xg), s>0

m Always brings you down:

%f(fﬂ(t)) = (&(t), Vf(2(1)) = ~[Vf(@)I* <0
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(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz ‘63, Polyak '63]:
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Geometric conditions

(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz '63, Polyak '63]:
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Getting linear rates without convexity:
V>0, @(t)+Vf(z(t) =0, =z(0)=umx

Supposing PL holds:

% (f(@(®) = f*) = =V < —2u (f(=(?)) - f*)

Therefore,

f(a(t)) — f* < exp(=2ut)(f(z0) — )
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(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz ‘63, Polyak '63]:
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Geometric conditions

(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz ‘63, Polyak '63]:

3 >0, Vo e R, 2u(f(x) - f*) < IVF(@)?

Getting linear rates without convexity:

f(@(t) = 7 < exp(=2ut)(f(z0) — f7)
Are we already done?

No. PL is a restrictive assumption to hold globally:

— No critical points: V f only cancels at the global minimizer!
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Geometric conditions

(Polyak)-Lojasiewicz (PL) inequality [Lojasiewicz '63, Polyak '63]:

>0, Vo e RY 2u(f(z) — f*) < |Vf())?

Where does z(t) go? Simple calculations show that under PL,

V>0, () — ol s/ot li(s)|ds < W(fﬂ(i—f)

The trajectory is trapped in a ball!




Semilocal convergence

It is sufficient to have PL on the corresponding ball — Semilocal PL
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Theorem [Oymak et al. '19, Kachaiev et al. '26]: Suppose that for some
w > 0:

2 (f(20) — f*)

Ve € B (:U(),
7

) , 2u(f(@) — f*) < V(@)

Then, the solution z(t) of GF starting from z is such that
m it stays in the ball,

m it converges to a global minimizer z* (!) and:

f@t) = f* < exp(=2ut)(f(x0) — f7)
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Semilocal convergence

Why Semilocal? PL is required to hold on the ball

. (%’ 2 (f(zo) - f*))

!

Classical conditions in optimization:
m Global — holds everywhere
m Local — holds around minimizers

Here, PL holds around the initialization!
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Semilocal convergence

How to enforce this assumption? Take
1
fiom SIH@) -y 3 HiRP 5 RY y* e RY

Theorem [Kachaiev et al. '26, Chatterjee '22]: If for some > 0, there
exists g, > 0 such that

Vo € B(zo,7), 0omin(Ju(x)) >0, and y* € B(H(zg),ro.).

Then,
m f satisfies semilocal PL for y = o2

*

m GF converges to z* s.t. H(z*) =y




A simple example

A simple neural network: Let z = (a,w) with a € R and w € RY.

1
f:a;»—>§||H(x)—y*|]2, H:zw— aw, y* € R?
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A simple example

A simple neural network: Let z = (a,w) with a € R and w € R%.

1
f:mr—>§HH(:r)—y*H2, H:zw aw, y* € R?

When does GF converge?

Let wg = 04. Find ag € R, r > 0 and o, > 0 such that:

Vz € B(xo,7), omin(Ju(z)) > 0"

y* € B(H(xg),roy)

10



A simple example

r

A simple neural network: Let 2z = (a,w) with a € R and w € R%.

1
f::n»—>§||H(:U)—y*H2, H:xz = aw, y* c R

When does GF converge?

Let wg = 04. Find ag € R, r > 0 and o, > 0 such that:

V(a,w) € B((ao, wo),7), \/a® + |[w|*> > or

y* € B(H(ag,wq),roy)
0,
—Uq

10



A simple example

~

A simple neural network: Let z = (a,w) with a € R and w € R%.

1
f:a;»—>§||H(3:)—y*H2, H:zw— aw, y* € R?

When does GF converge?

lao]

V(a,w) € B((ag, wo),7), \/a?+ ||wl|]2 > |a| > |ag| =7 =0, >0

2
Qa
ro, =L > |y

Linear convergence!

Let wo = 0g. Fix r = =5 and 0, = |ag| — 7 = |a—2°| For |ag| sufficiently large:

10
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Is non convex optimization solved?
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Is non convex optimization solved?

No! This approach is restrictive in various ways:

m Optimization: artificially increasing u (or 0,,) = increasing the Lipschitz
constant of V f!

— Critical issue for discrete algorithms!
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Discussion

Is non convex optimization solved?

No! This approach is restrictive in various ways:
m Optimization: artificially increasing u (or 0,,) = increasing the Lipschitz
constant of V f!
— Critical issue for discrete algorithms!
m Learning: rescaling f through initialization = entering lazy training
regime [Chizat et al. '19]
— Behaves as a linearized model!

11



Conclusion

Takeaways:

m Non convex optimization on
overparameterized models can
be fine!

m Everything happens at
initialization

Limitations:

m Impractical for discrete
algorithms

m Everything happens at
initialization!

Open questions:

— Are there practical cases where Semilocal PL holds?
— Could inertial techniques help in this context? [Buskulic et al. '25]
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Thank you for your attention!

Questions?
Related paper:

Kachaiev, O., Labarriére, H., Molinari, C., Villa, S., On the Semilocal Convergence of
Overparameterized Models, in preparation.

My Website:

https://hippolytelbrrr.github.io/pages/index_eng.html
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Appendix

Where does z(t) go?

o)~ zoll < [ et)lds = [ 19 5als

))|lds <

t

HVf( ( ))II2

0 2u(f(z(s)) — f*)

ds




Appendix

Where does z(t) go?

t 2
lo(t) ~aoll < [ laelds = [ 19salas < [ —THED_a,

Since &\/fz(®) — * = W %(f(m(t)) /)

=—[IVf(@®)I?

lx(2) —$0H<\/»{\/fl‘o —\/f(x(t))_f*]g W
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Appendix

Where does z(t) go?

t 2(s12
|z (t) — xol| </ ||l &(s ||d3—/ IV f(x(s))||ds < V£ (z(s))l

0 2u(f
Since & VIT(0) ~ I* = - Z(f( ®) - 1)

=—[IVf(@@®)I?

(z(s)) = f*)

ds

|2(t) — 2ol < \/>[\/f (x0) —\/f(a:(t))—f*] < 2(f(:a2—f*)

The trajectory always stays in a ball around x!
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